Matter exists in different phases depending on the amount of kinetic energy (temperature) particles have
Particle model of matter: describes how particles (can be individual atoms, molecule, compounds) move and interact in different phases

* these properties are the for 'ideal' gases bot this is not tue for all gases

Avogadro's Law: under Standard Temperature and Pressure (STP) equal volumes of different gases contain equal number of particles.

$$
\left.\begin{array}{l}
\text { amount of } \\
\text { ideal gas }(\text { mol })
\end{array} n_{\text {gas }}=\frac{V}{V_{m}} \quad \begin{array}{l}
\text { Volume of gas }\left(\mathrm{dm}^{3} \text { or } \mathrm{L}\right) \\
\text { gas molar volume }\left(22.7 \mathrm{dm}^{3} \mathrm{~mol}\right.
\end{array}\right)
$$

Example problems

(i) ~ Calculate volume of gas ~

Calculate the volume occupied by 16.00 g of O_{2} at STP.
(ii)
~ Calculate mass of gas ~
Calculate the amount of grams of $5.43 \times 10^{4} \mathrm{~mL}$ of CH_{y} at STP.
(iii) ~ Calculate number of atoms of gas ~

A sample of Cl_{2} gas at STP occupies 17.IL. Calculate the mass of Cl_{2} and number of Cl atoms present in sample.

Gas Stoichiometry

Example problems

(i) ~ Calculate volume of product from known mass of limiting reactant \sim
3.54 g of magnesium is reacted with excess hydrochloric acid. Calculate volume of hydrogen gas produced at STP.
(ii) ~ Calculate volume of prodoct from known volume of reactants ~ $5 \mathrm{dm}^{3}$ of carbon monoxide and $2 \mathrm{dm}^{3}$ of oxygen gas react at STP. What is the maximum volume of CO_{2} that con be produced? What volume of excess reactant that remains?
(iii) ~ Calculate volume of reactant from known mass of product ~ What volume in cm^{3} of oxygen gas is required in the complete combustion of $\mathrm{C}_{3} \mathrm{H}_{8}$ if 5.0 g of water is produced?

