Dilution: to make a solution less concentrated by adding more solvent
\sim the number of molecules, or moles, of solute that is present remains the same before and after dilution \sim

Example problems

(i) ~ calculating initial volume ~

For an experiment, you must make 2.0 L of $0.10 \mathrm{~mol} / \mathrm{L}$ sulfuric acid. The acid is usually sold as an $18 \mathrm{~mol} / \mathrm{L}$ concentrated solution. How much of the concentrated solution should be used to make a new solution?
1-write the
$C_{1}=18 \mathrm{~mol} / \mathrm{L}$
given information
$V_{1}=$?
$C_{2}=0.10 \mathrm{~mol} / \mathrm{L}$
$V_{2}=2.0 \mathrm{~L}$
2. use formula
$c_{1} v_{1}=c_{2} v_{2}$
$C_{1} V_{1}=C_{2} V_{2}$
$v_{1}=\frac{c_{2} v_{2}}{c_{1}}$
$V_{1}=\frac{(0.10 \mathrm{~mol} / \mathrm{L})(2.0 \mathrm{~L})}{18 \mathrm{~mol} / \mathrm{L}}$
$=0.01 \mathrm{~L}$
(ii) \sim calculating final concentration \sim

A solution is prepared by adding 600 mL of distilled water to 100 mL of $0.15 \mathrm{~mol} / \mathrm{L}$ ammonium nitrate. Calculate the molar concentration of the diluted solution.
1-write the
$C_{1}=0.15 \mathrm{~mol} / \mathrm{L}$
$V_{1}=100 \mathrm{~mL} \times \frac{\mathrm{L}}{1000 \mathrm{~mL}}=0.1 \mathrm{~L}$
given information
and convert to
appropriate units
$c_{2}=$?
$V_{2}=600 \mathrm{~mL}+100 \mathrm{~mL}=700 \mathrm{~mL} \times \frac{\mathrm{L}}{1000 \mathrm{~mL}}=0.7 \mathrm{~L}$
2. use formula
$c_{1} v_{1}=c_{2} v_{2}$

$$
C_{1} V_{1}=C_{2} V_{2} \quad C_{2}=\frac{C_{1} V_{1}}{V_{2}}=\frac{(0.15 \mathrm{~mol} / \mathrm{L})(0.1 \mathrm{~L})}{0.7 \mathrm{~L}}=0.021 \mathrm{~mol} / \mathrm{L}
$$

(iii) ~ calculating required volume for dilution ~ How much water would 1 need to add to 500 mL of a 2.4 M KCl solution to make a 1.0 M solution ?
1-write the given information and convert to appropriate units
$c_{1}=2.4 \mathrm{~g} / \mathrm{mol} \mathrm{kCl}$
$V_{1}=500 \mathrm{~mL} \times \frac{\mathrm{L}}{1000 \mathrm{~mL}}=0.5 \mathrm{~L}$
$C_{2}=1.0 \mathrm{~g} / \mathrm{mol}$
$v_{2}=$?
$\begin{aligned} & \text { 2. } \text { use formula } \\ & C_{1} V_{1}=C_{2} V_{2}\end{aligned} \quad C_{1} V_{1}=C_{2} V_{2} \quad V_{2}=\frac{C_{1} V_{1}}{C_{2}}=\frac{(2.4 \mathrm{~mol} / \mathrm{L})(0.5 \mathrm{~L})}{1.0 \mathrm{~mol} / \mathrm{L}}=1.2 \mathrm{~L}$
3- find difference befuren V_{1} and V_{2}

$$
\text { amount added }=V_{2}-V_{1}=1.2 \mathrm{~L}-0.5 \mathrm{~L}=0.7 \mathrm{~L}
$$

Standard solution: solution containing precisely known concentration of a substance
uses : determine unknown concentrations of other substances via titration
as tested concentrations in scientific investigations

Preparing molar standard solutions (mol L^{-1}) using solid solute:

Part A: Calculate amount of solute needed

1 -Determine desired concentration and volume
2- Calculate mass of solute needed using $n=c v$

$$
\text { ex: } 500 \mathrm{~mL} \text { of } 0.5 \mathrm{M} \mathrm{NaCl}) \quad \begin{aligned}
\text { ex: } n & =(0.5 \mathrm{molL} \\
& =0.25 \mathrm{mbl} \times \frac{58.44 \mathrm{~g}}{\mathrm{mot}} \\
& =14.61 \mathrm{~g} \text { of } \mathrm{NaCl} \text { needed }
\end{aligned}
$$

Part B: preparing solution

4-transfer solution into 500 mL volumetric flask ($\pm 0.5 \mathrm{~mL}$) using a funnel. Ensure
all of solute is transferred by rinsing beaker with squirt bottle of water - fig. 3
4-transfer solution into 500 mL volumetric flask ($\pm 0.5 \mathrm{~mL}$) using a funnel. Ensure
all of solute is transferred by rinsing beaker with squirt bottle of water - fig. 3
5-Add distilled water to flask until ~ lem below mark on neck. - fig. 4
b-Insert stopper and while holding it down with thumb, shake and invert flask multiple times
7- While looking at mark at eye level, carefully add water using squirt bottle until bottom of miniscus reaches mark - fig. 5

fig. 2

1- weigh 14.61 g of NaCl on a weighing boat using electronic scale ($\pm 0.01 \mathrm{~g}$) - fig. 1
2-add $\sim 100 \mathrm{~mL}$ of distilled water to a 250 mL beaker
3-transfer 14.61 g of NaCl to beaker and stirs with rod until dissolved. - fig. 2 Add more water if necessary

fig. 4

Preparing molar standard solutions (mol L^{-1}) by dilution:

Part A: Calculate amount of solute needed

fig. 5

1-Determine desired concentration and volume
ex: 100 mL of 0.1 M NaCl
ex: $0.5 \mathrm{M} \mathrm{NaCl}(\mathrm{aq})$
ex: $V_{1}=\frac{C_{2} V_{2}}{C_{1}}=\frac{(0.1 M)(0.1 \mathrm{~L})}{(0.5 \mathrm{M})}=0.02 K \times \frac{1000 \mathrm{~mL}}{\mathrm{~K}}=20 \mathrm{~mL}$ of 0.5 M NaCl needed
Part B: preparing solution
1- measure 20 mL of 0.5 M NaCl solution using 50 mL graduated cylinder ($\pm 0.5 \mathrm{~mL}$)
2-transfer solution into 100 mL volumetric flask $(\pm 0.1 \mathrm{~mL})$ using a funnel - fig. 6
3-Add distilled water to flask until ~lem below mark on neck. - fig. 4
4 - Insert stopper and while holding it down with thumb, shake and invert flask multiple times

5-While looking at mark at eye level, carefully add water using squirt bottle until bottom of miniscus reaches mark - fig. 5

Preparing \% mass/volume solutions (\% m / v):
these solutions are made using solid solute dissolved in liquid solvents
$\% \mathrm{~m} / \mathrm{v}=\frac{\text { mass of solute }(\mathrm{g})}{\text { volume of solution }(\mathrm{mL})} \times 100$
ex: You want to prepare 50 mL of 20% sucrose solution
How much solute and solvent do you need?

$$
\begin{aligned}
\text { Solute }(\mathrm{g}) & =\frac{\text { solution }(\mathrm{mL}) \times \%}{100} \\
& =\frac{(50 \mathrm{~mL})(20 \%)}{100} \\
& =10 \mathrm{~g} \text { of sucrose dissolved into } 50 \mathrm{~mL} \text { of water }
\end{aligned}
$$

Preparing \% volume/volume solutions (\% v/v):
\longrightarrow these solutions are made using liquid solute dissolved in liquid solvents

$$
\% v / v=\frac{\text { volume of solute }(\mathrm{mL})}{(\text { volume of solute }(\mathrm{mL})+\text { volume of solvent }(\mathrm{mL}))} \times 100
$$

ex: You want to prepare 100 mL of $5 \% \mathrm{HCl}$ solution

How much solute and solvent do you need?

$$
\begin{aligned}
\text { Solute }(\mathrm{mL}) & =\frac{\text { solution }(\mathrm{mL}) \times \%}{100} \\
& =\frac{(100 \mathrm{~mL})(5 \%)}{100} \\
& =5 \mathrm{~mL} \text { of } \mathrm{HCl}
\end{aligned}
$$

$$
\text { Solvent }(m L)=\text { solution }(m L)-\text { solute }(m L)
$$

Preparing \% mass / mass mixtures ($\% \mathrm{~m} / \mathrm{m}$):

\rightarrow these mixtures are often made using different solids

$$
\% \mathrm{~m} / \mathrm{m}=\frac{\text { mass of solute }(\mathrm{g})}{(\text { mass of solute }(\mathrm{g})+\text { mass of 'solvent' }(\mathrm{g}))} \times 100
$$

ex: You want to prepare 150 g of $1 \% \mathrm{NaCl}$ in sand mixture

$$
\begin{aligned}
& =100 \mathrm{~mL}-5 \mathrm{~mL} \\
& =95 \mathrm{~mL} \text { of water }
\end{aligned}
$$ How much NaCl and sand do you need?

$$
\begin{aligned}
\mathrm{NaCl}(\mathrm{~g}) & =\frac{\text { solution }(\mathrm{g}) \times \%}{100} \\
& =\frac{(150 \mathrm{~g})(1 \%)}{100} \\
& =1.5 \mathrm{~g} \mathrm{NaCl}
\end{aligned}
$$

* note: water has a density of $1 \mathrm{gmL}^{-1} \therefore \quad \therefore \quad \lg$ water $=1 \mathrm{~mL}$ of water

