	Diluting Solutions
Dilution : to make a	a solution less concentrated by adding more solvent
	e l'entre menules d'alle l'et is annu le l'entre l'étaite
~ <i>The</i> numbe	r of molecules, or moles, of solute that is present remains the same before and after Dilution ~
	initial volume (L) final concentration (mol/L)
	$\begin{array}{c} \bigcirc_1 \vee_1 & - & \bigcirc_2 \vee_2 \\ & & & & & \\ \end{array}$
j	nilial concentration (mol/L)
<u>Example problems</u>	
(i) ~ calculating initial	volume ~
For an experiment, concentrated solution.	you must make 2.0L of 0.10 mol/L sulfuric acid. The acid is usually sold as an 18 mol/L tow much of the concentrated solution should be used to make a new solution?
l colle die	
j - write the	$C_1 = 18 \text{ mol}/L$ $V_1 = ?$
Great markers	$C_2 = 0.10 \text{ mol}/L$
	$V_z = 2.0L$
2. use formula	$C_1V_1 = C_2V_2$ $V_2 = C_2V_2$ $V_3 = (0.10 \text{ mol}/L)(2.0 \text{ L})$
$C_1 V_1 = C_2 V_2$	C_i 18 mol/L
(ii) ~ calculating tinal	concentration \sim
Calculate the molar of	concentration of the diluted solution.
l-write the	$C_1 = O \cdot 15 \text{ mol}/L$
given information	$V_1 = 100 \text{ mL x}$ $L = 0.1 L$
and convert to	C = ?
appropriate units	$V_{2} = 600 \text{ mL} + 100 \text{ mL} = 700 \text{ mL} \times ______ = 0.7 \text{ L}$
	1000 mL
2. use formula	$C_1V_1 = C_2V_2$ $C_2 = C_1V_1 = (0.15 \text{ mol}/L)(0.1L) = 0.021 \text{ mol}/L$
$C_1V_1 = C_2V_2$	V2 0.7L
(iii) at calculation convid	cect volume for dilution ~
How much water u	sould I need to add to SOO mL of a 2.4 M KCl solution to make a 1.0 M solution?
l-write the	C, = 2.4g/mol KCl
given information	$V_1 = 500 \text{mLx} L = 0.5 L$
and convert to	1000 mL
appropriate units	$\frac{C_2 = 1.0 g/mol}{V_1 = 7}$
	$V_2 = 1$

2. use formula	$C_1V_1 = C_2 V_2 \qquad V_2 =$	$\underline{C_1V_1} = \underline{(2.4)}$	$-4 \mod /L (0.5L) = 1.2L$
$C_1V_1 = C_2V_2$		Cz	1.0 mol /L
3 - find difference	amount added = $V_z - V_i$	= 1.2L - 0.5L	= 0.7L
between V. and Vz			

fig. 6

1- measure 20mL of 0.5M NaCl solution using 50mL graduated cylinder (±0.5mL)

2 - transfer solution into 100 mL volumetric flask (±0.1 mL) using a funnel - fig. 6

3 - Add distilled water to flask until ~Icm below mark on neck. - fig. 4

4 - Insert stopper and while holding it down with thumb, shake and invert flask multiple times

5 - While looking at mark at eye level, carefully add water using squirt bottle until bottom of miniscus reaches mark - fig. 5

Creating Percentage Solutions

= 1.5g NaCl

* note: water has a density of IgmL⁻¹ ... Ig water = ImL of water