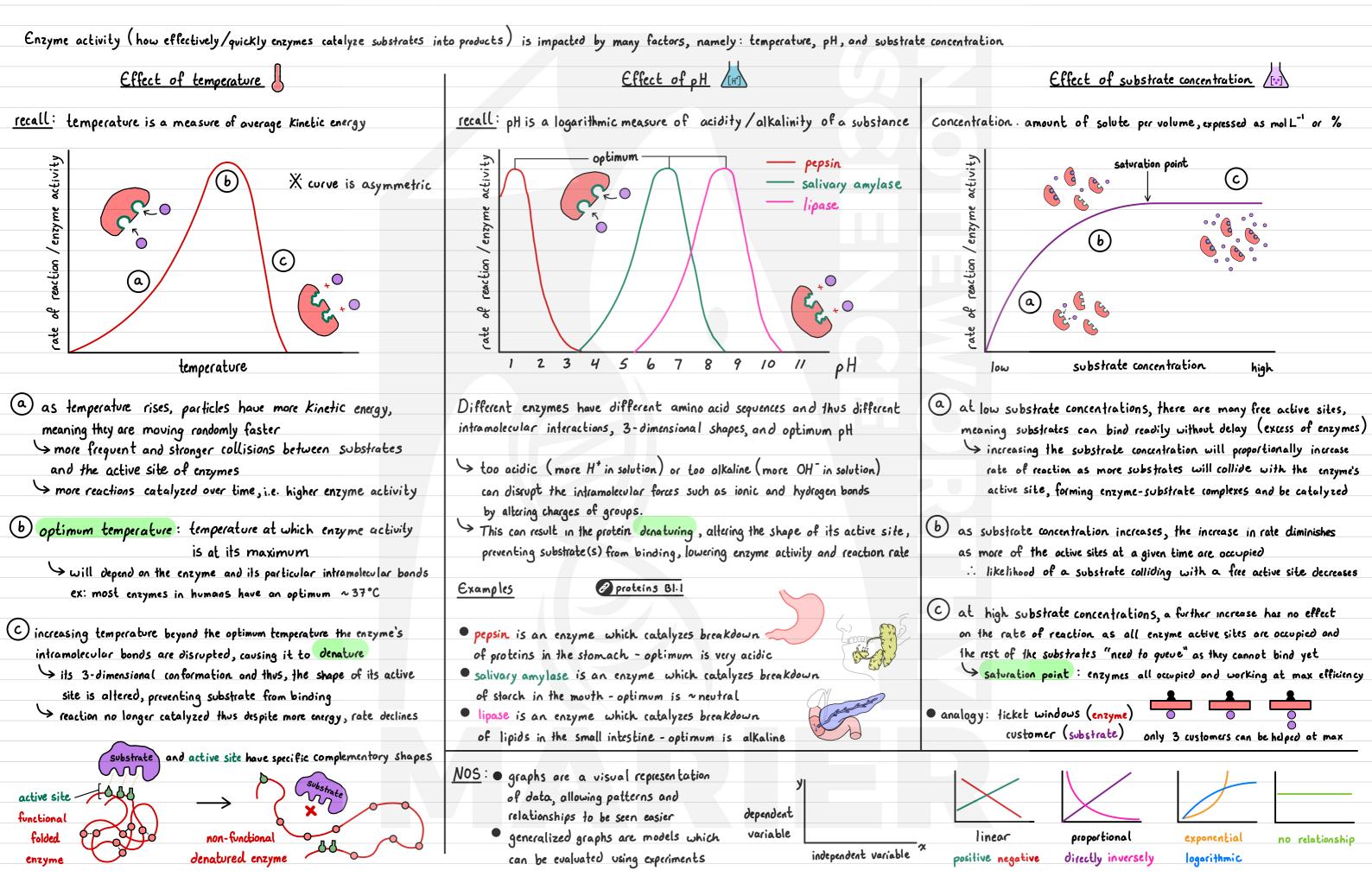


5L Learning Outcomes

C1.1.1	Enzymes as catalysts	Students should understand the benefit of increasing rates of reaction in cells.
C1.1.2	Role of enzymes in metabolism	Students should understand that metabolism is the complex network of interdependent and interacting chemical reactions occurring in living organisms. Because of enzyme specificity, many different enzymes are required by living organisms, and control over metabolism can be exerted through these enzymes.
C1.1.3	Anabolic and catabolic reactions	Examples of anabolism should include the formation of macromolecules from monomers by condensation reactions including protein synthesis, glycogen formation and photosynthesis. Examples of catabolism should include hydrolysis of macromolecules into monomers in digestion and oxidation of substrates in respiration.
C1.1.4	Enzymes as globular proteins with an active site for catalysis	Include that the active site is composed of a few amino acids only, but interactions between amino acids within the overall three-dimensional structure of the enzyme ensure that the active site has the necessary properties for catalysis.
C1.1.5	Interactions between substrate and active site to allow induced- fit binding	Students should recognize that both substrate and enzymes change shape when binding occurs.
C1.1.6	Role of molecular motion and substrate-active site collisions in enzyme catalysis	Movement is needed for a substrate molecule and an active site to come together. Sometimes large substrate molecules are immobilized while sometimes enzymes can be immobilized by being embedded in membranes.
C1.1.7	Relationships between the structure of the active site, enzyme substrate specificity and denaturation	Students should be able to explain these relationships.
C1.1.8	Effects of temperature, pH and substrate concentration on the rate of enzyme activity	The effects should be explained with reference to collision theory and denaturation. Application of skills: Students should be able to interpret graphs showing the effects. NOS: Students should be able to describe the relationship between variables as shown in graphs. They should recognize that generalized sketches of relationships are examples of models in biology. Models in the form of sketch graphs can be evaluated using results from enzyme experiments.
C1.1.9	Measurements in enzyme-catalysed reactions	Application of skills : Students should determine reaction rates through experimentation and using secondary data.
C1.1.10	Effect of enzymes on activation energy	Application of skills : Students should appreciate that energy is required to break bonds within the substrate and that there is an energy yield when bonds are made to form the products of an enzymecatalysed reaction. Students should be able to interpret graphs showing this effect.

HL Learning Outcomes

C1.1.11	Intracellular and extracellular enzyme-catalysed reactions	Include glycolysis and the Krebs cycle as intracellular examples and chemical digestion in the gut as an extracellular example.
C1.1.12	Generation of heat energy by the reactions of metabolism	Include the idea that heat generation is inevitable because metabolic reactions are not 100% efficient in energy transfer. Mammals, birds and some other animals depend on this heat production for maintenance of constant body temperature.
C1.1.13	Cyclical and linear pathways in metabolism	Use glycolysis, the Krebs cycle and the Calvin cycle as examples.
C1.1.14	Allosteric sites and non-competitive inhibition	Students should appreciate that only specific substances can bind to an allosteric site. Binding causes interactions within an enzyme that lead to conformational changes, which alter the active site enough to prevent catalysis. Binding is reversible.
C1.1.15	Competitive inhibition as a consequence of an inhibitor binding reversibly to an active site	Use statins as an example of competitive inhibitors. Include the difference between competitive and noncompetitive inhibition in the interactions between substrate and inhibitor and therefore in the effect of substrate concentration.
C1.1.16	Regulation of metabolic pathways by feedback inhibition	Use the pathway that produces isoleucine as an example of an end product acting as an inhibitor.
C1.1.17	Mechanism-based inhibition as a consequence of chemical changes to the active site caused by the irreversible binding of an inhibitor	Use penicillin as an example. Include the change to transpeptidases that confers resistance to penicillin.



C1.1.2—Role of enzymes in metabolism. C1.1.3—Anabolic and catabolic reactions. C1.1.10—Effect of enzymes on activation energy Metabolism: complex network of interdependent and interacting chemical reactions occurring in living organisms the effect (s) that two or more systems / bodies / substances / organisms have on one another resulting in emergent properties when two or more things depend/rely on each other, such as the activity of enzymes relying on each other in a pathway enzyme 1 c enzyme 3 nearly all metabolic reactions are catalyzed by enzymes and many in multi-step pathways where the product of one reaction is the substrate for the next i.e. A > this allows a reaction to be precisely regulated (as a different enzyme required at each step) and the energy involved better-controlled (as it can be incrementally released and used rather than all at once) cells can direct specific reactions by synthesizing specific enzymes or blocking them, giving them control ex: if cellular respiration occurred in one step it would be combustion! this requires organisms to make many different enzymes X enzymes are typically named after their substrate + ase ex: lactase breaks down lactose Metabolic reactions can be classified as either anabolic or catabolic O- OH + H-Anabolism: synthesis of complex, larger molecules from simpler, smaller molecules Catabolism: breakdown of larger complex molecules into simpler, smaller molecules > formation of monomers from macromolecules by hydrolysis reactions formation of macromolecules from monomers by condensation reactions examples: examples: Synthesis of proteins from amino acids (translation) proteins BI-1 protein synthesis D1.2 hydrolysis of macromolecules into monomers in digestion (in mouth, stomach, intestines) Synthesis of polysaccharides from monosaccharides (ex: glucose into glycogen)

Synthesis of DNA from nucleotides nucleic acids A1.2

DNA replication D1.1 Oxidation of substrates in cellular respiration @ cell respiration C1.2 digestion of complex carbon compounds from dead organic matter by decomposers transfers of energy and matter C4.2 • photosynthesis C1.3 Chemistry review z energy absorbed In chemical reactions, the bonds holding reactants unstable transition state together need to break, which requires energy while forming new bonds in the products releases energy anabolic reactions are endergonic: energy used to break bonds > energy released from forming bonds > catabolic reactions are exergenic : energy used to break bonds < energy released from forming bonds .. reactants have more energy than products (released to surroundings) · products have more energy than reactants (taken from surroundings) transition state transition state · Activation energy (Ea) is needed to analogy: boulder on hillside reach the transition state, i.e. break Ea of uncatalyzed reaction Ea of uncatalyzed reaction the bonds holding reactants together. the boulder needs to _ Ea of catalyzed reaction be pushed up a hill energy · Enzymes lower the Ea through binding reactants in order to break Ea of catalyzed energy absorbed with substrate at the active site which energy released destabilizes these bonds, making it easier reactants to reach transition state and initiate reaction products enzyme lowers the hill so less X enzymes do not provide or alter energy levels of reactants or products reaction progress reaction progress pushing needed

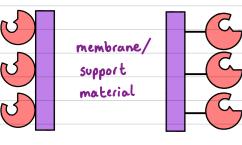
C1.1.7—Relationships between the structure of the active site, enzyme–substrate specificity and denaturation. C1.1.8—Effects of temperature, pH and substrate concentration on the rate of enzyme activity

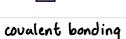
In living organisms nearly all chemical reactions occur in solutions - whether inside cells (cytoplasm, organelles, vesicles) or outside (interstitial fluid, blood plasma) Water Al. 1

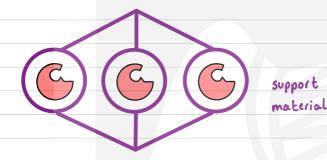
recall: in order for an enzyme-catalyzed reaction to occur, the substrate must collide at the right orientation and with sufficient energy at the enzyme's active site

> as both substrates and enzymes are moving randomly in solutions, increasing collision likelihood is crucial

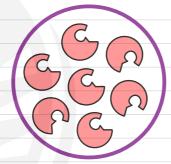
increasing temperature provides more kinetic energy and increases collision likelihood, but it cannot be raised too high as enzymes will denature and stop functioning

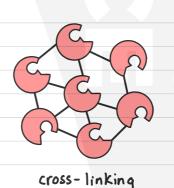

increasing enzyme concentration would be beneficial but this requires additional resources


solution: immobilization

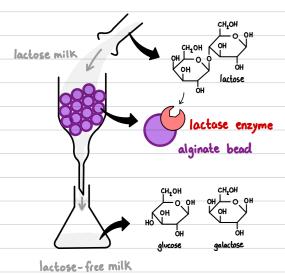

adsorption

immobilized enzyme: an enzyme attached to an inert, insoluble material -> this is beneficial as it improves enzyme stability and can provide a better environment for enzyme activity


enzymes can be immobilized in a number of ways:



entrapment


micro encapsulation

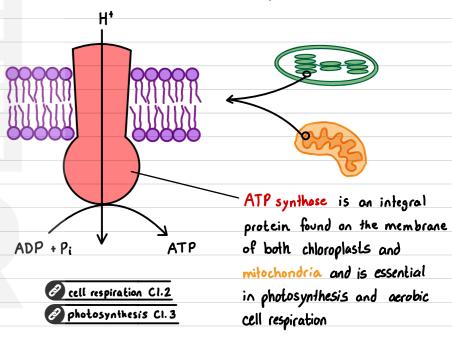
X sometimes large substrate molecules can be immobilized similarly for better efficiency

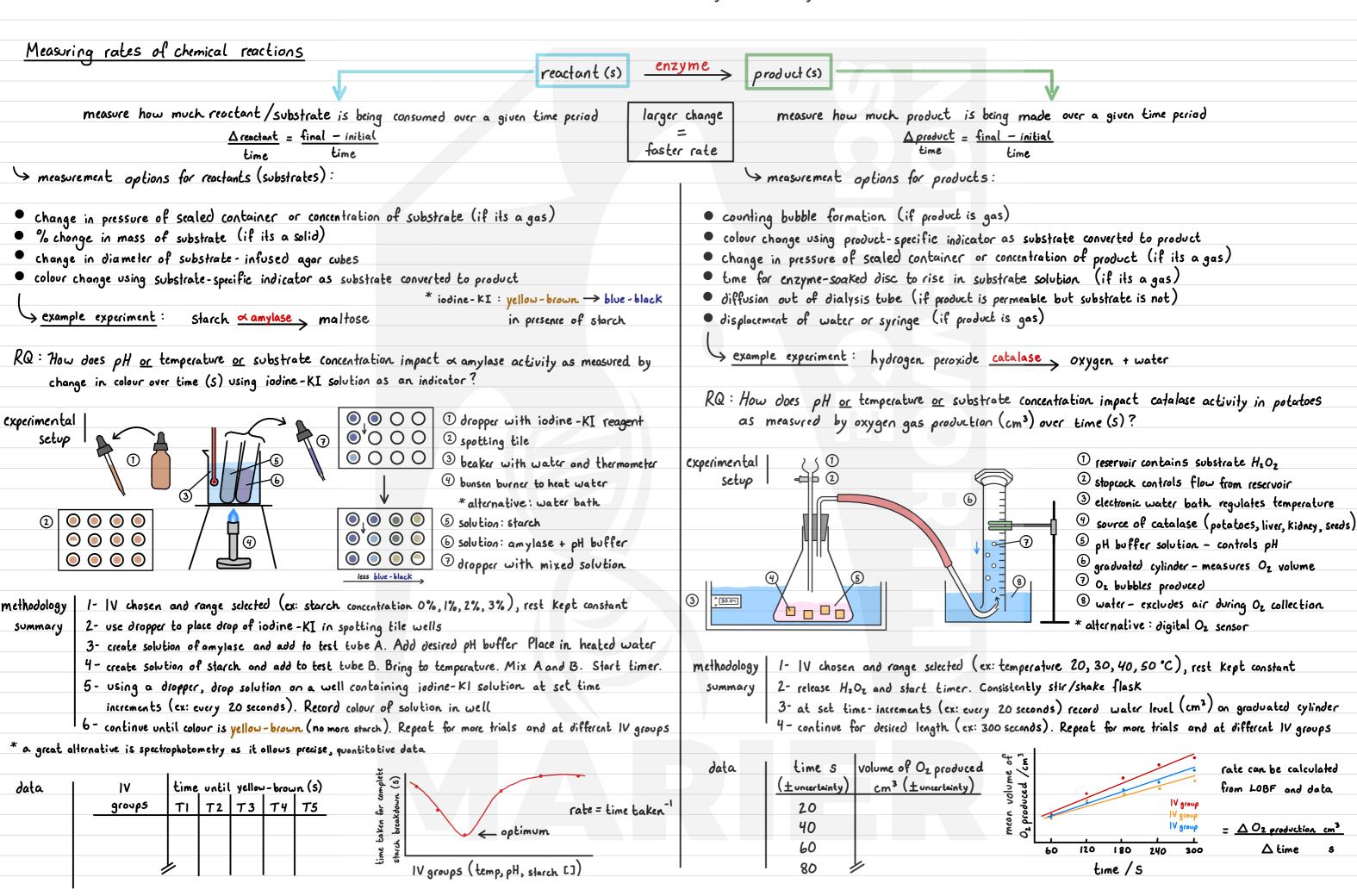
immobilized enzymes are frequently used in industry

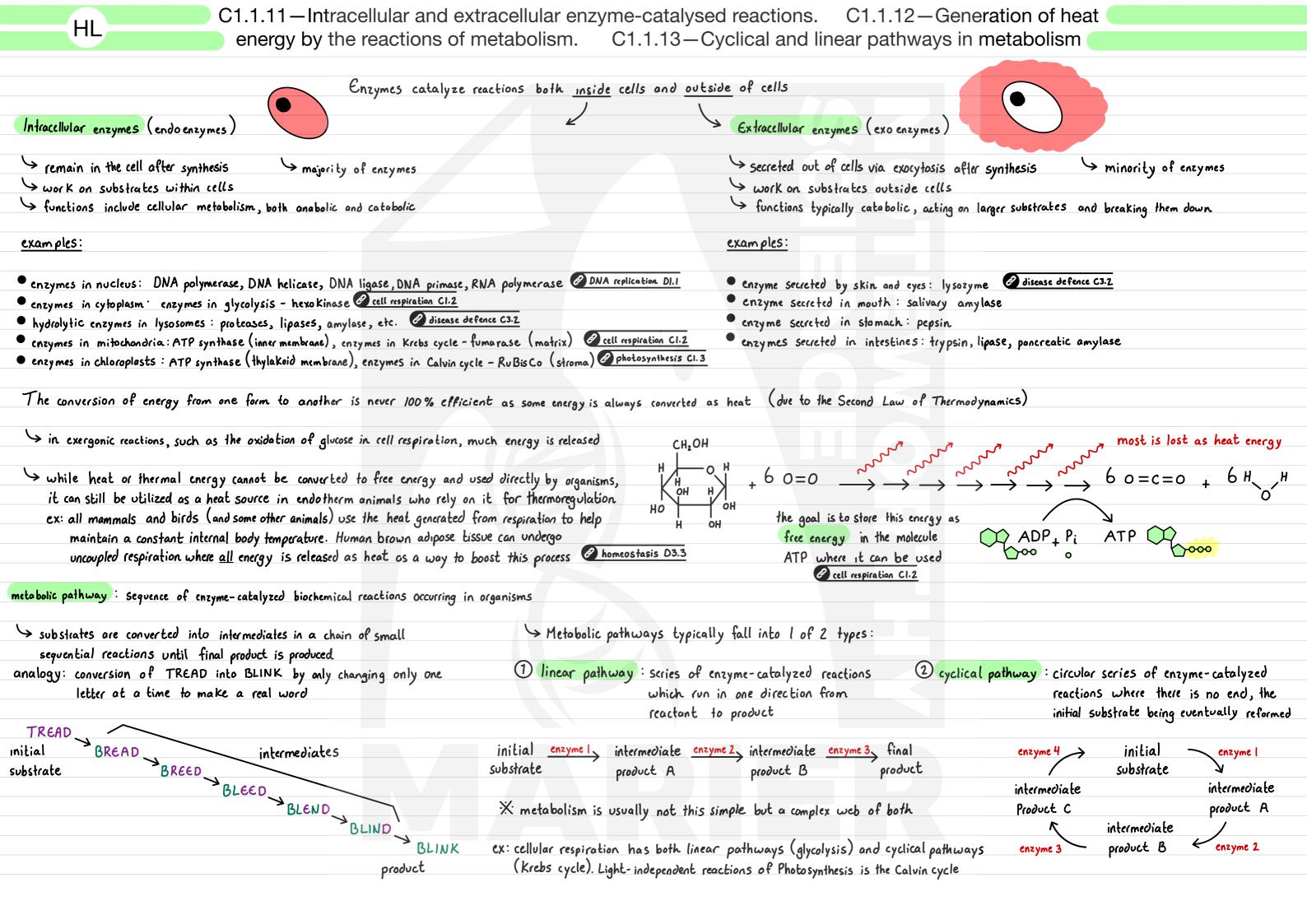
ex: the production of lactose - free milk:

milk containing lactose is passed repeatedly through a funnel containing lactase immobilized on beads.

lactase breaks down lactose into glucose and galactose, producing lactose-free milk. As lactase is immobilized it is not in the final product and can be easily re-used

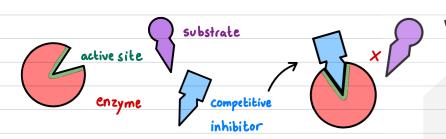

X advantages to using these in industry:


- enzymes easily separated from product
- enzymes retrieved easier for re-use
- renzymes stable at higher temperatures without denaturing
- renzymes can be used at higher concentrations

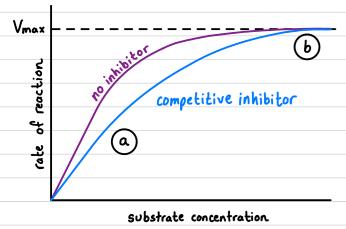

other examples of immobilized enzyme use:

- production of gluten-free beer
- production of penicillin and other antibiotics
- production of ethanol biofuels
- diagnosis of diseases
- cleaning textiles

immobilized enzymes are used in key metabolic processes:



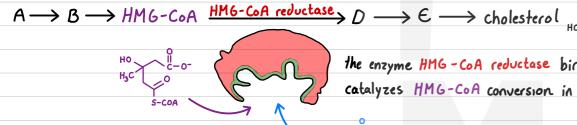
Enzyme activity can be reduced or halted entirely by the binding of inhibitors (typically reversibly). There are two major types: competitive and non-competitive


Competitive inhibitors: compete directly with the substrate and bind to the enzyme's active site blocking substrate from binding

competitive inhibitor is structurally and chemically similar to the substrate allowing it to form similar interactions and bind to the enzyme's active site, blocking the substrate and preventing catalysis

Effect on enzyme activity

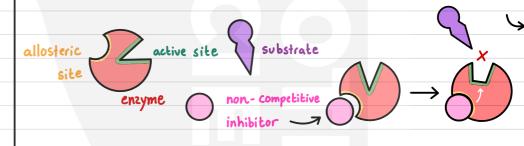
HL



- rate of reaction is reduced as inhibitor competes with substrate, reducing successful enzyme-substrate complexes and catalysis - lowering enzyme affinity. Increasing the substrate concentration increases likelihood of enzyme binding with it rather than inhibitor
- (b) Maximum rate of reaction (Vmax) is achieved as the concentration of substrate is so high that the likelihood of enzyme's binding to them overcomes inhibition

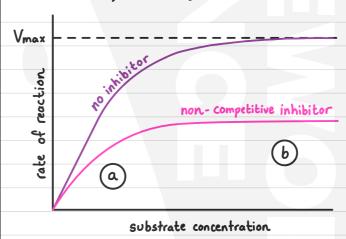
Example - Statins

- > Statins are medicines that are used to treat high blood cholesterol a contributor to heart disease
- They function as competitive inhibitors to HMG-COA reductase, reducing the liver's production of cholesteral
- Cholesterol is the product of a linear metabolic pathway:



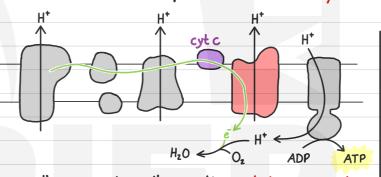
the enzyme HMG-CoA reductase binds to and catalyzes HMG-COA conversion in the pathway

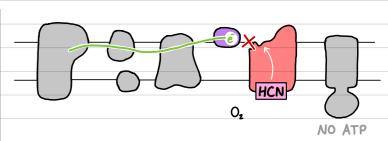
- * two forms of cholesteral in blood:
 - HDL collects excess in blood
 - LDL delivers from liver
- : if LDL >> HDL, cholesterol builds up and can form plaque


due to their similar shape, the molecule group Statins competes with HMG-COA and can also bind to the active site of HMG-CoA reductase, reducing the rate of reaction and ultimately the amount of cholesterol being produced

Non-competitive inhibitors: bind to an enzyme's allosteric site (not active site), causing a change to the active site, preventing a substrate from binding

non-competitive inhibitor binds to the allosteric site, altering interactions within the enzyme, leading to a conformational change to the active site preventing the substrate from successfully binding for as long as it is bound

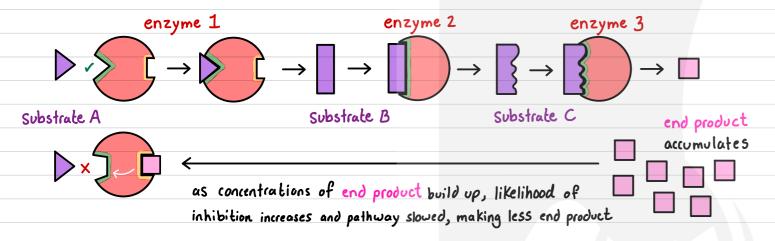

Effect on enzyme activity


- (a) rate of reaction is reduced as inhibitor alters the active site and disables some enzymes, causing fewer able to catalyze substrate reactions. Enzyme affinity unaltered as uninhibited enzymes function just as well
- (b) Maximum rate of reaction (Vmax) achieved is far lower than uninhibited as adding more substrates cannot overcome enzymes which are disabled/inactive as they do not compete with inhibitors for the allosteric site

Example - Cyanide poisoning

- Syanides, such as Hydrogen Cyanide HCN are very potent poisons which if ingested or inhaled may be fatal as it halfs oxidative phosphorylation during aerobic respiration in mitochondria.
- It acts as a non-competitive inhibitor to cytochrome c oxidase (Complex IV) in the electron transport chain.

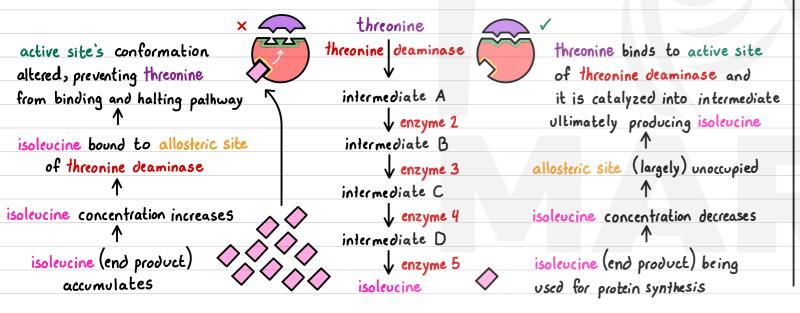
normally, in aerobic cell respiration, cytochrome c oxidase removes electrons from cytochrome c and puts them onto Oz to form water. This process allows H+ to be pumped into intermembrane space in order to diffuse through ATP Synthase and produce ATP & cell respiration C1.2

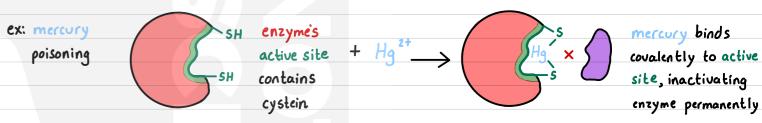

Cyanide binds to an allosteric site of cytochrome c oxidase causing a conformational change, inhibiting electron transfer from cytochrome c. This halts the electron transport chain, preventing water formation, proton gradient formation, and the production of ATP aerobically, leading to death

HL

C1.1.16—Regulation of metabolic pathways by feedback inhibition. C1.1.17—Mechanism-based inhibition as a consequence of chemical changes to the active site caused by the irreversible binding of an inhibitor

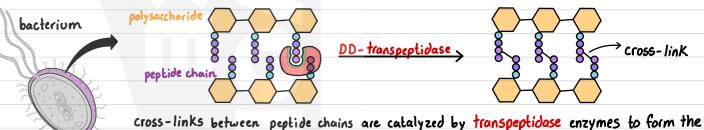
Many metabolic pathways are not always active and making products as this may produce an overabundance of product and waste materials and energy instead they are regulated by the process of feedback or end-product inhibition


Feedback inhibition: When the end-product of a metabolic pathway acts as an inhibitor to the initial enzyme in the pathway, thus halting its own production - end product acts like a non-competitive inhibitor and binds to the allosteric site of the first enzyme, altering its active site and disabling it

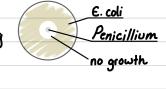

This is an example of negative feedback: teedback that tends to counteract any deviation from equilibrium and promotes stability. Very common in homeostatic controls where if a system moves from set point, changes occur to reduce and reverse this change in order to maintain steady-state ex: blood glucose and temperature regulation homeostasis D3.3

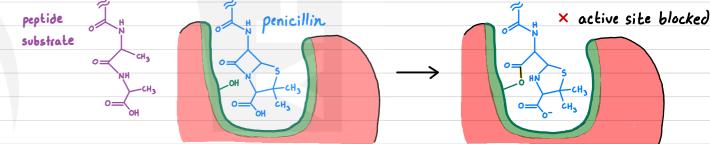
Example - threonine-isoleucine pathway

Bacteria (but not humans) can synthesize the amino acid isolevcine from threonine in a metabolic pathway

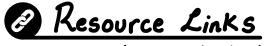

Some inhibitors, such as heavy metals (ex: mercury) or nerve agents (ex: Sarin) bind irreversibly to the active site of enzymes by forming strong covalent bonds with SH residues, which can be fatal

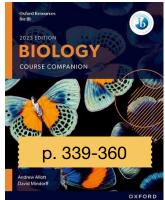
Mechanism-based inhibition: when unreactive molecules are activated through catalytic (aka suicide inhibitors) reactions, causing irreversible enzyme inhibition

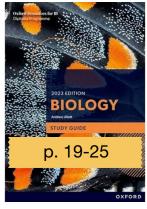

> These types of inhibitors are specific to a certain enzyme (their shape is similar to the substrate) allowing them to bind to the active site. Once bound, they are modified by the enzyme into a reactive group which forms a covalent bond with enzyme resulting in a permanent inhibitor-enzyme complex

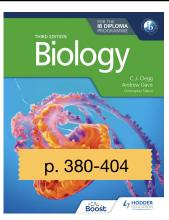

Example - penicillin antibiotic

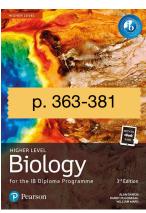
peptidoglycan cell wall in bacteria. Cell wall is crucial for cellular structure and protection

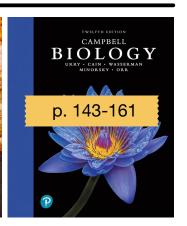

Penicillin is a group of antibiotic chemicals obtained from Penicillium moulds they have a very similar shape to the terminal ends of the peptide chains, allowing them to bind in the active site of transpeptidase instead of the peptide substrate

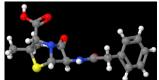

Penicillin enters active site and is subsequently modified, forming covalent bond with the enzyme. This bond is irreversible; blocking the active site and inactivating transpeptidase > as peptidoglycan synthesis is halted, bacterial cell wall is compromised, which causes cell to be unable to maintain osmotic pressure, leading to cell lysis and death


X some bacterial strains have become resistant to antibiotics through mutations. One mutation caused the shape of the transpepsidase active site to change, reducing penicillin's affinity or even ability to bind

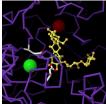


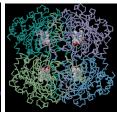

each resource is hyperlinked

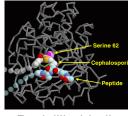

>Textbooks






3D models


Penicillin G

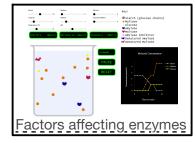

Amylase

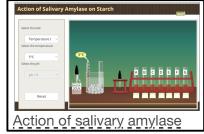
Alpha-amylase

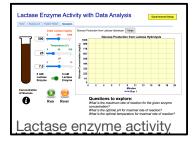
Catalase

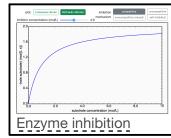
Penicillin-binding proteins

Articles


Bansal, A. B. (2023, July 3). HMG-COA reductase inhibitors. StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK542212/


Knowles, J. R. (1985). Penicillin resistance: the chemistry of .beta.-lactamase inhibition. Accounts of Chemical Research, 18(4), 97–104. https://doi.org/10.1021/ar00112a001


Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E. (2023). Enzyme immobilization Technologies and industrial Applications. ACS Omega, 8(6), 5184–5196. https://doi.org/10.1021/acsomega.2c07560


Wolfenden R. (2011). Benchmark reaction rates, the stability of biological molecules in water, and the evolution of catalytic power in enzymes. Annual review of biochemistry, 80, 645–667. https://doi.org/10.1146/annurev-biochem-060409-093051

Simulators/Interactives

