

- 17.4.1 Describe inheritance as the transmission of genetic information from generation to generation
- 17.4.2 Describe genotype as the genetic make-up of an organism and in terms of the alleles present

Inheritance

• 17.4.3 – Describe phenotype as the observable features of an organism

Outcomes

Learning

- 17.4.4 Describe homozygous as having two identical alleles of a particular gene
- 17.4.5 State that two identical homozygous individuals that breed together will be pure-breeding
- 17.4.6 Describe heterozygous as having two different alleles of a particular gene
- 17.4.8 Describe a dominant allele as an allele that is expressed if it is present in the genotype
- 17.4.9 Describe a recessive allele as an allele that is only expressed when there is no dominant allele
 of the gene present in the genotype
- 17.4.10 Interpret pedigree diagrams for the inheritance of a given characteristic
- 17.4.11 Use genetic diagrams to **predict** the results of monohybrid crosses and **calculate** phenotypic ratios, limited to 1 : 1 and 3 : 1 ratios
- 17.4.12 Use Punnett squares in crosses which result in more than one genotype to work out and show the possible different genotypes
- 17.4.13 Explain how to use a test cross to identify an unknown genotype
- 17.4.14 Describe codominance as a situation in which both alleles in heterozygous organisms contribute to the phenotype
- 17.4.15 Explain the inheritance of ABO blood groups: phenotypes are A, B, AB and O blood groups and alleles are I^A, I^B and I^o
- 17.4.16 **Describe** a sex-linked characteristic as a feature in which the gene responsible is located on a sex chromosome and that this makes the characteristic more common in one sex than in the other
- 17.4.17 Describe red-green colour blindness as an example of sex linkage
- 17.4.18 Use genetic diagrams to predict the results of monohybrid crosses involving codominance or sex linkage and calculate phenotypic ratios

Single-Factor Inheritance

Inheritance : the transmission of genetic information from gener	ation to generation (i.e. from parent to offspring)
(22) _ fert	ilization (Ovum with haploid nucleus from female
	(1 of each chromosome : 1 of each allele)
sperm with haploid nucleus from male	
(1 of each chromosome ∴ 1 of each allele)	
	zygote with diploid nucleus
	(Z of each chromosome : 2 of each allele)
homologous chron	nosome s
Genotype : genetic make-up of on organism a	homozygous recessive : two identical recessive alleles of a particular gene
in terms of alleles present	as there is no Dominant allele, recessive allele is not
	masked and is expressed in the phenotype
Phenotype : observable fratures of an organism	
the expression of the genotype 13 13	homozygous Dominant two identical Dominont alleles of a particular gene
	> Dominant allele expressed in phenotype
Dominant alleles are always expressed	
in the phenotype - they mask	heteromony i two different alleles of a multiples and
The expression of recessive affects	Dominant allele masks graussing of gressive allele and
recessive alleles are only expressed in phenotype	only Dominant allele expression of increasive and
in the absence of a dominant allele	
Notes:	ex: in rabbits, the allele for black for is dominant to the allele
alleles are typically represented by single letters of	dominant allele for white fur for the gene controlling fur colouration
alleles controlling the same characteristic are given th	e same letter - Black - B × Black - Bl this implies two genes
I dominant allele is given the capital letter, recessive	lower case / white - b × white - w this implies different gene
a male	
A pea plant produces peas that are smooth. Another plant p	produces peas that are wrinkled When the gene responsible for pea shape
was analyzed in both, it was found that the allele for wrinkled	was found in both. Deduce the genotype for both plants
Because the allele for wrinkled was found in both but only expressed	in one the plants, it must be recessive to smooth.
Since the smooth pea plant has different alleles for the same ge	ne, it is heterozygous (Ss)
Since the wrinkled peoplant is expressing a recessive allele, it	must be homozygous recessive (ss)
* The penalizer above are enclosed of circle failer that	a the memories of a dark is a stability to see the second to be seen it is second to
nation that most characteristics are not like this but controlled by	The expression of a grait is confronted by a single gene. It is worth
noting new most createristics are not the this out contraited by	many genes
Pure breeds refers to individuals that are homozygous for a	acre as they will always pass down the same allele to their offsocing
thus the offspring will always express the same phen	lotype as their parents

ex: In pea plants, flower colour is controlled by one gene where the allele for purple is dominant (P) to white (p)

Monohybrid Crosses

Monohybrid cross : cross between two organisms with different genotypes for <u>one</u> particular gene <u>ex</u>: AA × aa AA × Aa Aa × aa

Green pod colour	Heterozygous green			J' an		
is Dominant (G)	pea plant (6g)				>	
	×	<u>k</u> (9	69 9	ead	ch squar	e represents 25% chance
Yellow pod colour	homozygous white		$\langle - - $	of	an offsp	bring having that genotype
is recessive (g)	pea plant (gg)		Ge e	9		
	parent's	genotype	50% chance of	50% chance a	of	l:l ratio
How to predict the probability of groatype	s		having green pods	having yellow	0005	
Ner						
In squirrels, grey for is dominant and	brown for is recessive	. A brown female	is crossed with a h	omozygous grey	male	
Deduce the phenotypic and genotypic rati	o of potential offsprin	g as well as the lil	kelihood their offspii	ng will be brown	L.	
D write the given information (2) of	raw Punnett square	e (3) Drop d	own the (D Each box rep	presents 2	25%
	with parent genoty	pes alleles	to each box	6	6	
male phenotype: grey	6 6	(6	9 69	60	100% chance of grey
O genotype · GG	<u>a</u>	q	→ ·	9 69	<u> </u>	0% change of home
female phenotype: heaven	9	9		J I J I J	0 3	o is chance of brown
qenotype: qq	J	.		phenotypic	ratio	Grey: brown = 1:0
0 71 00				genotypic	ratio	66:69:99 = 0:1:0
male						
Brown eyes is dominant to blue eyes	. A brown eyed m	an, whose mother	has blue eyes marrie	es a blue eyed	woman	•
Deduce the probability that their off	spring will have b	lue eyes.				
	S walkers bb	I B b	60% dia m	P Luna		
male phenotype: brown	mother . DD	h Bh bh	50% chance	of blue		
female chapature: hlue	allele to son	6 B 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	phenotypic of	atia hrown:	hlue =	1:1
9 genetuge: bb	·· Bb		genotypic i	ratio BB : B	36:66	= 0:1:1
5 9F			0 //			
		ar on				
		Jest Gross	es			
mele						
In sheep, black wool is domina	nt to white woo					
	's easy to deduce i	its genotype: as i	t's expressing the rece	ssive allele, it,	nust be	homozygous recessive (bb

Co-dominance : both alle	les in heterozygous genotypes are e	xpressed in the phenotype. Λ	leither is dominant or masks the other
ABO blood groups		3 types:	coded by 3 alleles:
		->-D-A A antigen	1^{A}] 1^{A} and 1^{B} are co-dominant
the ABO gene cod	es for red blood cell antigens	->	jß
Ū	U	A → → → → → → → → → → → → → → → → → → →	J^{o} (also shown as i) J^{o} is recessive to J^{A} and J^{B}
		-	
Blood group	Phenotype	RBC antibody	Genotype
		^B N ^B	
A	A B A anligen	anti-B	
6	B B antigen	anti-A	or 1010
	B B O antigen	anti-B and anti-A	
AD	A and 5 antigens	nore	
Exomple A man is type AB	and his wife is helerozygous B.	What is the phenotypic and	genotypic ratio of their potential offspring?
male phenotype:		25% type A	
0° geno type :		50% type B p	headyaic ratio A: B: O: AB = 1:2:0:1
female phenotype	B ° ^ ° ^B °	25% type AB g	$ \frac{1}{12} $
qenotype:	^B °		
Example Alice has blood typ Their second child l	e A blood and her husband has b has type AB blood. Deduce the ga	word type B blood. Their fir notype of both Alice and he	st child, Amanda, has type O blood. r husband
Alice phenotype:	Type A Amanda phenot	ype: Type ()	_ ^ ° Amanda
geno type :	^ ^ or ^ ° genety	$pe: ^{\circ} ^{\circ}$	
husband phenotype:	Type B		° ^ ° ° ° Alice's genotype: ^ °
genotype:	^B ^B or ^B ^O must recieve a	recessive allele from <u>each</u>	parent husband's genotype: ^B ^O
	e e e e e e e e e e e e e e e e e e e	Dinhaa	
	Oe	x-L'Inkuye	
Both males and females have amount of autosomes, in h	e the same umans it's 22 pairs		thromosomes differ in males x y x x
Sex linkage : gene located o	on a sex chromosome (X or y) th	nus, the pattern of inheritance	e differs between males and females
X-linked means	females have homologous X chr	omosomes \rightarrow two copies o	of allele -> inheritance pattern similar to autosomal traits
☐ dene found on	males only have 1 X chromos	ome -> single copy of	allele -> if allele present, always expressed
X chromosome			recessive phenotype more common
YX (
→ <u>Red-green colour</u>	blindness		
The same that a	des for red-areen colour-defection ni	ements for photogenetors	2 alleles: X ^N pormal colour vision - Dominant

in the eye is located on the X chromosome The recessive allele is a mutant,

Xⁿ red-green colour blindness - recessive

which does not properly produce the pigments, causing red and green to look similar

Genotype $X^{N}y$ $X^{n}y$ $X^{N}X^{N}$ $X^{n}X^{n}X^{n}$ $X^{n}X^{n}X^{n}$ $X^{n}X^{n}X^{n$

Example A colour - blind woman and normal vision man want to have children what is the probability of: a) having a colour-blind child b) colour blind girl c) colour blind boy

Deducing the type of inheritance of a condition can be done through analysis

Is the shaded trait autosomal dominant or recessive? the trait is <u>recessive</u> If it was dominont, II-1 and II-2 would be aa and it would be impossible to have a child affected (II-2)

autosomal recessive patterns

if both parents of an affected individual are unaffected, they must be heterozygous
if both porents are affected, all offspring must be affected (aa)

Is the shaded trait autosomal dominant or recessive? the trait is <u>Dominant</u>

If the trait is recessive, than II-5 and II-6 would be aa it would be impossible to have a child unaffected (III-3 and III-4)

autosomal Dominant patterns

· every affected individual has at least		
one affect parent - cont skip generations	Aa	A
· if both parents are affected and offspring		
is unaffected, parents must be helerozygous		

· if both povents unaffected, offspring unaffected

Is the shaded recessive trait autosomal or X-linked? trait is X-linked recessive

only time female is affected is when both parents carry the recessive allele (X^{a}) as females need 2 copies to be affected

X-linked recessive patterns	
• all sons of affected mothers are affected	
· unaffected mother (carrier) can have affected sons	
• males fend to be more commonly affected	古古人
* can't be confirmed but suggested	x , x ,

Answer the following questions :

(1) For the following crosses.

i) Determine the phenotype and genotype of the parents

ii) Draw a Punnett square of the cross

iii) Determine the phenotypic ratio of offspring

iv) Determine the genutypic ratio of offspring

a) Hornless (H) in callle is dominant over horned (h). A horned bull is mated with a homozygous hornless cow

b) In tomatoes, red fruit (R) is dominant over yellow fruit. A heterozygous red is crossed with yellow.

C) In guinea pigs, short hair (S) is dominant over long (s). Two heterozygous short hairs mated

d) (n Chickens, black feathers (C^B) is co-dominant to white (C^W). A white rooster mated with a white / black chicken

e) Man has type O blood has children with an AB woman.

f) Red-green colour blindness is sex-linked recessive in humans (Xn). A colour blind male and carrier female

(2) Sickle-cell anemia is a co-dominant trait with two different alleles: Hb (normal) and Hb (sickle cell)

a) Using research, provide all possible phenotypes with their corresponding genotypes

b) In a malaria - prevalent area, which genotype is ideal ? Explain.

3 Using your understanding of antigens and antibodies, explain and justify which blood type is

a) the universal donor

b) the universal recipient

(4) A woman has type B blood and her husband has AB blood. Is it possible for them to have a child with O. Explain

(5) Draw a 3 generation pedigree chart clearly showing the inheritance of a sex-linked recessive disorder. Start with an affected male and unaffected female

(6) Analyze the 3 pedigrees on the previous page. For each, deduce as many of the genotypes as possible

(7) The pedigree below shows the inheritance of fur colour in mice.

a) deduce which characteristic is dominant

b) deduce the genotypes of as many individuals as possible

