Learning
 Outcomes

- 17.4.1 - Describe inheritance as the transmission of genetic information from generation to generation
- 17.4.2 - Describe genotype as the genetic make-up of an organism and in terms of the alleles present
- 17.4.3 - Describe phenotype as the observable features of an organism
- 17.4.4 - Describe homozygous as having two identical alleles of a particular gene
- 17.4.5 - State that two identical homozygous individuals that breed together will be pure-breeding
- 17.4.6 - Describe heterozygous as having two different alleles of a particular gene
- 17.4.8 - Describe a dominant allele as an allele that is expressed if it is present in the genotype
- 17.4.9 - Describe a recessive allele as an allele that is only expressed when there is no dominant allele of the gene present in the genotype
- 17.4.10 - Interpret pedigree diagrams for the inheritance of a given characteristic
- 17.4.11 - Use genetic diagrams to predict the results of monohybrid crosses and calculate phenotypic ratios, limited to $1: 1$ and $3: 1$ ratios
- 17.4.12 - Use Punnett squares in crosses which result in more than one genotype to work out and show the possible different genotypes
- 17.4.13 - Explain how to use a test cross to identify an unknown genotype
- 17.4.14 - Describe codominance as a situation in which both alleles in heterozygous organisms contribute to the phenotype
- 17.4.15 - Explain the inheritance of $A B O$ blood groups: phenotypes are $A, B, A B$ and O blood groups and alleles are $\mathrm{I}^{\mathrm{A}}, \mathrm{I}^{\mathrm{B}}$ and I°
- 17.4.16 - Describe a sex-linked characteristic as a feature in which the gene responsible is located on a sex chromosome and that this makes the characteristic more common in one sex than in the other
- 17.4.17 - Describe red-green colour blindness as an example of sex linkage
- 17.4.18 - Use genetic diagrams to predict the results of monohybrid crosses involving codominance or sex linkage and calculate phenotypic ratios

Single-Factor Inheritance

Inheritance: the transmission of genetic information from generation to generation (ie. from parent to offspring)

Genotype: genetic make-up of on organism in terms of alleles present

Phenotype : observable features of an organism the expression of the genotype

Dominant alleles are always expressed in the phenotype - they mask the expression of recessive alleles
recessive alleles are only expressed in phenotype in the absence of a dominant allele

Notes:

ex: in rabbits, the allele for black fur is dominant to the allele for white fur for the gene controlling fur colouration \checkmark Black - B \times Black - BI this implies two genes \checkmark white - $b \quad x$ white $-\omega$ this implies different gene

A pea plant produces peas that are smooth. Another plant produces peas that are wrinkled. When the gene responsible for pea shape was analyzed in both, it was found that the allele for wrinkled was found in both. Deduce the genotype for both plants

Because the allele for wrinkled was found in both but only expressed in one the plants, it must be recessive to smooth.
Since the smooth pea plant has different alleles for the same gene, it is heterozygous (Ss)
since the wrinkled pea plant is expressing a recessive allele, it must be homozygous recessive (ss)

* The genotypes above are examples of single-factor inheritance, where the expression of a trait is controlled by a single gene. It is worth noting that most characteristics are not like this but controlled by many genes.

Pure breeds: refers to individuals that are homozygous for a gene as they will always pass down the same allele to their offspring thus the offspring will always express the same phenotype as their parents
ex: In pea plants, flower colour is controlled by one gene where the allele for purple is dominant (P) to white (p)

If two pure-breed purple plants were crossed all the offspring will be purple

If two non-pure bred purple plants were
crossed the offspring may inherit Pallele or p allele
(pp)

(p_{p})

(P_{p})

While most are purple, some offspring are white

FIconcupbud Guises

Monohybrid cross: cross between two organisms with different genotypes for one particular gene
ex: $A A \times a a \quad A A \times A a \quad A a \times a a$
Punnett square: (named after geneticist Reginald C. Punnett) is a diagram used to predict genotypes of a cross

How to predict the probability of genotypes

In squirrels, grey fur is dominant and brown fur is recessive. A brown female is crossed with a homozygous grey male
Deduce the phenotypic and genotypic ratio of potential offspring as well as the likelihood their offspring will be brown.
(1)
write the given information
(2) draw Punnett square with parent genotypes
(3) Drop down the alleles to each box
male phenotype: grey $\sigma^{\prime \prime}$ genotype: $G G$
female phenotype: brown

	6	6
9		
9		

(4) Each box represents 25%

	G	G
g	G_{g}	G_{g}
g	G_{g}	G_{g}

100% chance of grey
0% chance of brown
phenotypic ratio Grey: brown $=1: 0$
genotypic ratio $G G: G g: g 9=0: 1: 0$

Brown eyes is dominant to blue eyes. A brown eyed man, whose mother has blue eyes marries a blue eyed woman.
Deduce the probability that their offspring will have blue eyes.

Test Grosses

In sheep, black wool is dominant to white wool.
If you see a white sheep, it is easy to deduce its genotype: as it's expressing the recessive allele, it must be homozygous recessive (bb) but if you see a black sheep, its genotype is not certain.
solution test cross: crossing unknown genotype with a homozygous recessive in order to see if recessive allele becomes expressed in offspring
(1) cross the unknown dominant genotype with homozygous recessive

will always be masked \therefore phenotype of offspring reflect other parent
(2) Repeat cross many times and examine large number of offspring
note: probabilities are random independent events 50% black could still mean out of 4 offspring all are black. Unlikely, but possible
ex: coin flips are $\sim 50 / 50$ but it's possible to flip heads S times in a row

Qo-Dominance

Co-dominance: both alleles in heterozygous genotypes are expressed in the phenotype. Neither is dominant or masks the other

ABO blood groups
the $A B O$ gene codes for red blood cell antigens

coded by 3 alleles:

$\left.\begin{array}{l}I^{A} \\ I^{B}\end{array}\right\} 1^{A}$ and 1^{B} are co-dominant
1° (also shown as i) 1° is recessive to I^{A} and I^{B}

A man is type $A B$ and his wife is heterozygous B. What is the phenotypic and genotypic ratio of their potential offspring?

$$
\begin{aligned}
& \text { male phenotype: } A B \\
& \sigma^{B} \text { genotype: }\left.\left.\right|^{A}\right|^{B} \\
& \text { female phenotype: } B \\
& \text { \& genotype: }\left.\left.\right|^{B}\right|^{0} \\
& \text { phenotypic ratio } A: B: 0: A B \\
& \text { genotypic ratio }\left.\left.\right|^{A}\right|^{0}:\left.\left.\right|^{B}\right|^{B}:\left.\left.\right|^{B}\right|^{0}:\left.\left.\right|^{A}\right|^{B}=1: 1: 1: 1
\end{aligned}
$$

Alice has blood type A blood and her husband has blood type B blood. Their first child, Amanda, has type 0 blood.
Their second child has type $A B$ blood. Deduce the genotype of both Alice and her husband
Alice phenotype: Type A
Amanda phenotype: Type 0
genotype: $\left|{ }^{A}\right|^{A}$ or $\left.\left.\right|^{A}\right|^{\circ}$
genotype: $\left.\left.\right|^{0}\right|^{\circ}$
husband phenotype: Type B
genotype: $\left.\left.\right|^{B}\right|^{B}$ or $\left.\left.\right|^{B}\right|^{\circ}$ must recieve a recessive $\left.\right|^{\circ}$ allele from each parent

Alice's genotype: $\left|\left.\right|^{A}\right.$ husband's genotype: $\left|\left.\right|^{B}\right.$

Both males and females have the same amount of autosomes, in humans it's 22 pairs

Sex linkage: gene located on a sex chromosome (X or y) thus, the pattern of inheritance differs between males and females
$\left\{\left\{\begin{array}{cc}X \text {-linked means } & \text { females have homologous } X \text { chromosomes }\end{array} \rightarrow\right.\right.$ two copies of allele \rightarrow inheritance pattern similar to autosomal traits

$Y \times \longrightarrow \underline{\text { Red-green colour blindness }}$

The gene that codes for red-green colour-defecting pigments for photoreceptors in the eye is located on the X chromosome The recessive allele is a mutant,

2 alleles: $\begin{aligned} & X^{N} \text { normal colour vision - Dominant } \\ & X^{n} \text { red-green colour blindness - recessive }\end{aligned}$ which does not properly produce the pigments, causing red and green to look similar

A colour-blind woman and normal vision man want to hove children. What is the probability of:
a) having a colour-blind child b) colour blind girl c) colour-blind boy

Dedigrees

Pedigree : a chart visually showing a pattern of inheritance across generations

Deducing the type of inheritance of a condition can be done through analysis

Is the shaded trait autosomal dominant or recessive?
the trait is recessive
If it was dominant, II-1 and II-2 would be aa and it would be impossible to have a child affected (III-2)
autosomal recessive patterns

- if both parents of an affected individual are unaffected, they must be heterozygous
- if both porents are affected, all offspring must be affected (aa)

1
II

Is the shaded trait autosomal dominant or recessive?
the trait is Dominant
If the trait is recessive, than II-5 and II-6 would be aa
it would be impossible to have a child onaffected (III-3 and III-4)
autosomal Dominant patterns

- every affected individual has at least one affect parent - can't skip generations
- if both parents are affected and offspring is unaffected, parents must be heterozygous
- if both parents unaffected, offspring unaffected

Is the shaded recessive trait autosomal or X-linked?
trait is X-linked recessive
only time female is affected is when both parents carry the recessive allele $\left(X^{a}\right)$ as females need 2 copies to be affected

X-linked recessive patterns

- all sons of affected mothers are affected
- unaffected mother (carrier) can have affected sons
- males tend to be more commonly affected
* can't be confirmed but suggested

Assessment Tasks

Answer the following questions:
(1) For the following crosses:
i) Determine the phenotype and genotype of the parents
ii) Draw a Punnett square of the cross
iii) Determine the phenotypic ratio of offspring
iv) Determine the genotypic ratio of offspring
a) Hornless (H) in cattle is dominant over horned (h). A horned bull is mated with a homozygous hornless cow
b) In tomatoes, red fruit (R) is dominant over yellow fruit. A heterozygous red is crossed with yellow.
c) In guinea pigs, short hair (S) is dominant over long (s). Two heterozygous short hairs mated
d) In chickens, black feathers $\left(C^{B}\right)$ is co-dominant to white $\left(C^{w}\right)$. A white rooster mated with a white/black chicken
e) Man has type O blood has children with an $A B$ woman.
f) Red-green colour blindness is sex-linked recessive in humans $\left(X^{n}\right)$. A colour blind male and carrier female
(2) Sickle-cell anemia is a co-dominant trait with two different alleles: $H b^{A}$ (normal) and $H b^{s}$ (sickle cell)
a) Using research, provide all possible phenotypes with their corresponding genotypes
b) In a malaria -prevalent area, which genotype is ideal? Explain.
(3) Using your understanding of antigens and antibodies, explain and justify which blood type is
a) the universal donor
b) the universal recipient
(4) A woman has type B blood and her husband has $A B$ blood. Is it possible for them to have a child with O. Explain
(5) Draw a 3 generation pedigree chart clearly showing the inheritance of a sex-linked recessive disorder.

Start with an affected male and unaffected female
(6) Analyze the 3 pedigrees on the previous page. For each, deduce as many of the genotypes as possible
(7) The pedigree below shows the inheritance of for colour in mice.
a) deduce which characteristic is dominant
b) deduce the genotypes of as many individuals as possible

