When more than one reactant takes place in a chemical reaction, they will break apart and reform into products \rightarrow unless there is exactly the same amount of each, one reactant will be completely consumed and one will be leftover (limiting reactant: the reactant completely used up in a chemical reaction. The amount of product is limited by the quantity of this reactant excess reactant : the reactant remaining after the completion of a chemical reaction.
ex:

4 bike frames

4 wheels

2 complete bikes

2 leftover frames

* the wheels limited how many
complete bikes could be produced
\therefore wheels are limiting reactant \rightarrow by determining which reactant is limiting allows a calculation of theoretical maximum yield.

Example problems

(i) ~ Determining limiting and excess reactants \sim
50.0 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ is reacted with 75.0 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ to produce water and N_{2}. Determine the limiting and excess reactants.
(ii) ~ Determining how much product can be produced and how much of excess will be left over ~ a) How many grams of $\mathrm{lead}(11)$ chloride are produced from the reaction of 15.3 g of NaCl and 60.8 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$? b) How many grams will be left over of the excess reactant?
(iii) ~ Determining maximum yield of product given limiting reactant ~ 3 mol of $\mathrm{C}_{3} \mathrm{H}_{8}$ is reacted with excess oxygen $\left(\mathrm{O}_{2}\right)$. Determine the maximum mass of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ that can be produced.
(iv) ~ Determining maximum yield \sim

Calculate the maximum mass of AlCl_{3} that can be proved from a reaction of 2.80 g of aluminum and 4.15 g of chlorine gas.

* in order to speed up dissolving:
(1) mix the solution - helps distribute solute particles within solvent
(2) heat the solution - more kinetic energy, : solutes collide and interact with solvent more
* saturated solution : the maximum amount of solute dissolved within solvent. Adding more solute beyond this will not dissolve concentration: quantity of moles (n) or grams dissolved in one ${\int m^{3}}^{(} L)$ of solution

Example problems

(i) ~ calculating molar concentration ~

A saline solution contains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration?
(ii) ~ calculating mass and molar concentration ~
0.5 g of calcium hydroxide is added to 10 mL of water. What is its mass concentration $\left(\mathrm{gdm}^{-3}\right)$ and molar concentration (mol L-1)?
(iii) ~ calculating amount of solute (grams) ~

A saturated solution of $\mathrm{CaSO}_{4}(\mathrm{aq})$ has a concentration of $0.0154 \mathrm{~mol} / \mathrm{L}$.
A student takes 65 mL of the solution and evaporates it. What mass is left?

Solutions cont.
(iv) ~ calculating amount of solute (grams) ~

Determine the mass of solute present in a $500 \mathrm{~cm}^{3}$ solution of $0.100 \mathrm{~mol}_{\mathrm{m}}{ }^{-3}$ silver nitrate.
(v) ~ calculating solution volume ~

What volume of $0.25 \mathrm{~mol} / \mathrm{L}$ solution can be made using 14 g of sodium hydroxide?

Solution Stoichiomety

Example problems

(i) ~ calculating product mass from reactant ~

Calcium chloride reacts with phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ to produce calcium phosphate and hydrochloric acid, HCl .
How many grams of calcium phosphate can be produced if $2500 \mathrm{~cm}^{3}$ of 0.250 M calcium chloride reacts with excess phosphoric acid?
(ii) ~ calculating reactant volume ~

How many mililiters of 1.50 M nitric acid $\left(\mathrm{HNO}_{3}\right)$ is required to react with 100.0 g of cuprous oxide in the following unbalanced equation:

$$
\mathrm{HNO}_{3}+\mathrm{Cu}_{2} \mathrm{O} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

(iii) ~ calculate concentration of reactant ~ $60.5 \mathrm{~cm}^{3}$ of HNO_{3} are required to react with 25.0 mL of $1.00 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution to produce barium nitrate and water. what is the molarity of HNO_{3} solution?

