		Limiting Reactar	nt	
		0		-
When more than one reactant t	akes place in	a chemical reaction,	they will break	apart and reform into products
\rightarrow unless there is exactly the same	ne amount of e	ach, one reactant will be	e completely consume	d and one will be leftover
limiting reactant : the reactant com	pletely used up in	a chemical reaction. The am	mount of product is	limited by the quantity of this reactant
excess reactant : the reactant remaining	g after the compl	etion of a chemical reaction.		
	QC	$) \longrightarrow ($		
			X R	2 leftover frames
	<u> </u>			* the wheels limited how many
4 bike frames	4 wheels	2	complete hikes	complete bikes could be produced
y Dike (rames	7 Wheels	ζ	complete bikes	.: wheels are limiting reactant
by determining which reactant	is limiting a	llows a calculation of	theoretical maximum	n yield.
	0			/
<u>Example problems</u>				
i ~ Determining limiting and exce	co contrats of			
50.0g of NzHy is reacted with 7		to produce water and Na	e. Determine the li	miting and excess reactants.
1-write a chemical equation N	I _z Hy + N _z Oy	\rightarrow H_2O + N_2		
2 - balance the equation 2N	I. Hu + N. Ou	$\rightarrow 4 H_2 O + 3 N_2$		
		4 N Z 6		
		40 +4		
	8 9	r H Z 8		
3- calculate number of moles for	each reactant	50.0g NzHy x mol 32.06g		YNzOyx <u>mol</u> = 0.815 mol 92.02g
4 - divide moles of reactants by	coefficient.	1.56 mol No Hu ÷ 2 =	0.780 mal 0.81	5 mol $N_2O_4 \div 1 = 0.815$ mol
i biolos moles of reactants of				NzOy is excess reactant
		a and have when it are		
(ii) ~ Determining how much product a) How many grams of lead (11) ch	can be produce	and now much of calling of	(5) will be left of	60.80 of PL(NO.) ?
b) How many grams will be left			15.59 01 100 cl and	
1-write a chemical equation	NaCI	+ $Pb(NO_3)_2 \longrightarrow Pl$	bCl ₂ + NaNO ₃	
2-balance the equation	2 NaCl	+ $Pb(NO_3)_2 \rightarrow Pl$	bClz + 2NaNOz	
		2 x Na x2		
		2 % CI 2		

<u>3- calculate number of moles for each reactant 15.3g NaCl x mol = 0.262 mol 60.8g Pb (N03)2 x mol = 0.184 mol 58.44 g</u> 58.44 g

4 - divide moles of reactants by coefficient
 0.262 mol NaCl÷ 2 = 0.131 mol
 0.184 mol Pb(NO₃)₂÷ 1 = 0.184 mol
 ∴ NoCl is limiting
 ∴ Pb(NO₃)₂ is in excess
 5 - convert mol of limiting to g of product
 0.262 mol NaCl × 1 mol PbCl₂ × 278.11 g = 36.4 g PbCl₂
 2 mol NaCl mol

6- convert mol of limiting to g of excess 0.262 mol Nacl x <u>1 mol</u> Pb(N03)2 x <u>331.229</u> = 43.39 g of Pb(N03)2 will react and find difference 2 mol Nacl mol 60.8g - 43.39 g = 17.4g left Limiting Reactant cont.

	ess oxygen (O_2) . Determine the maximum mass of CO_2 and H_2O that can be	produceC
l-write a chemical equation	$C_3H_8 + O_2 \longrightarrow CO_2 + H_2O$	
2-balance the equation	$C_{3}H_{8} + 5O_{2} \longrightarrow 3CO_{2} + 4H_{2}O$ $3 C N 3$ $8 H 28$	
	10 2 0 3710	
3-write information underneath	C ₃ H ₈ + 5O ₂ → 3CO ₂ + 4H ₂ O 3mol (limiting) ?g ?g	
4 - convert mol of one substance to the needed substance	$3 \mod C_3 H_8 \times \frac{3 \mod C_2}{1 \mod C_3 H_8} \times \frac{44.019}{1 \mod C_3 H_8} = \frac{396.099}{1 \mod C_2}$	
	$3 \mod C_3 H_8 \times \frac{4 \mod H_2O}{1 \mod C_3 H_8} \times \frac{18.029}{1 \mod C_3 H_8} = \frac{216.249}{1 \mod H_2O}$	
V) ~ Delermining maximum yield ~ Calculate the maximum mass of AlCl3	that can be produced from a reaction of 2.80g of aluminum and 4.15g of	chlorine ga
-write a chemical equation	$A1 + Cl_2 \longrightarrow AlCl_3$	
-write a chemical equation -balance the equation	$\begin{array}{rcl} Al &+ & Cl_{2} &\longrightarrow & AlCl_{3} \\ 2Al &+ & 3Cl_{2} &\longrightarrow & 2AlCl_{3} \\ & & & 2IAl & I2 \\ & & & 6ZCI & 36 \end{array}$	
	$2AI + 3CI_2 \longrightarrow 2AICI_3$ $2I AI I 2$ $6Z CI 36$	D585 mol
-balance the equation	$2AI + 3CI_{2} \longrightarrow 2AICI_{3}$ $2IAIIZ$ $6ZCIZ6$ $4.15gCI_{2} \times \frac{mol}{26.98g} = 0.104 mol \qquad 4.15gCI_{2} \times \frac{mol}{70.9g} = 0.022$	
- balance the equation - calculate number of moles for each read	$2AI + 3CI_2 \rightarrow 2AICI_3$ $2 i AI i i 2$ $6 i CI i i i$ $2.80g AI \times \underline{mol} = 0.104 \mod 4.15g CI_2 \times \underline{mol} = 0.022$ $70.9g$ $0.104 \mod AI \div 2 = 0.052 \mod 0.0585 \mod CI_2 \div 3 = 0$ $\therefore AI \text{ is in excess} \qquad \therefore CI_2 \liminf $.0195 mol
 balance the equation Calculate number of moles for each read divide moles of reactants by coefficient 	$2A1 + 3Cl_{2} \rightarrow 2AlCl_{3}$ $2 \uparrow Al \uparrow 22$ $b \downarrow Cl \downarrow 26$ $4ant 2.80g Al \times \underline{mol} = 0.104 \text{ mol} 4.15g Cl_{2} \times \underline{mol} = 0.026$ $26.98g 70.9g = 0.052 \text{ mol} 0.0585 \text{ mol} Cl_{2} \div 3 = 0$ $\therefore Al \text{ is in excess} \qquad \therefore Cl_{2} \text{ limiting}$ $b = 0.0585 \text{ mgl}Cl_{2} \times \underline{2} \text{ mgl}AlCl_{3} \times \underline{133.33g} = 5.20g \text{ of }AlCl_{3}$.0195 mol

	Solutions
Solute: substance being dissolved Solvent. substance in w solvent dissolved	
★ in order to speed	d up dissolving: () mix the solution - helps distribute solute particles within soluent (2) heat the solution - more kinetic energy, : solutes collide and interact with solvent more
* saturated solution	n: the maximum amount of solute dissolved within solvent. Adding more solute beyond this will not dissolve
	quantity of moles (n) or grams dissolved in one dm ³ (L) of solution
	$\frac{\text{concentration}}{(\text{mol}/L \text{ or } g/L)} \longrightarrow C = \frac{n}{V} \leftarrow \text{moles (mol) or mass (g) of solute}$
	molar concentration, M mass concentration $\rightarrow IL = 1000 \text{ mL} = 1000 \text{ cm}^3 = 1 \text{ dm}^3$
A A A	
Example problems	
\bigcirc 1.1.1. 1	
i ~ calculating mole	ar concentration \sim
(i) ~ calculating mole A saline solution co	ar concentration ~ Intains 0.90g NaCl dissolved in 100mL of solution. What is the molar concentration?
A saline solution co	intains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration?
A saline solution con 1-write given	ntains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? c = ?
A saline solution con 1-write given information	ntains 0.90g NaCl dissolved in 100 mL of solution. What is the molar concentration? C = ? n = 0.90g NaCl xmol = 0.0154 mol NaCl
A saline solution con 1-write given information and convert to	ntains 0.90g NaCl dissolved in 100 mL of solution. What is the molar concentration? c = ? n = 0.90g NaCl x mol = 0.0154 mol NaCl 58 44g
A saline solution con 1-write given information	ntains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? C = ? n = 0.90 g NaCl x mol = 0.0154 mol NaCl 58 44 g V = 100 mL x l L = 0.1 L
A saline solution con 1-write given information and convert to	ntains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? C = ? n = 0.90 g NaCl x mol = 0.0154 mol NaCl 58 44 g V = 100 mL x l L = 0.1 L 1000 mL
A saline solution con 1-write given information and convert to	ntains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? C = ? n = 0.90 g NaCl x mol = 0.0154 mol NaCl 58 44 g V = 100 mL x l L = 0.1 L 1000 mL
A saline solution con 1-write given information and convert to appropriate units	ntains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? C = ? n = 0.90 g NaCl x mol = 0.0154 mol NaCl 58 44 g v = 100 mL x 1 L = 0.1 L 1000 mL
A saline solution con 1-write given information and convert to appropriate units 2-use formula c=n/v	mining 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? $C = ?$ $n = 0.90 \text{ g NaCl x} \text{mol} = 0.0154 \text{ mol NaCl}$ $V = 100 \text{ mK} \times \frac{1 \text{ L}}{1000 \text{ mK}} = 0.1 \text{ L}$ $C = \frac{n}{V} = \frac{0.015 \text{ mol}}{0.1 \text{ L}} = \frac{0.15 \text{ mol}}{L} / \frac{0.15 \text{ mol}}{0 \text{ m}^3}$
A saline solution con 1-write given information and convert to appropriate units 2-use formula c=n/v (ii) ~ calculating mass o	Intains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? $c = ?$ $n = 0.90 \text{ g NaCl } \times \underline{\text{mol}} = 0.0154 \text{ mol NaCl}$ $v = 100 \text{ mK} \times \underline{1 \text{ L}} = 0.1 \text{ L}$ $c = \underline{n} = \underline{0.015 \text{ mol}} = \underline{0.15 \text{ mol}} \frac{0.15 \text{ mol}}{L} \frac{0.15 \text{ mol}}{dm^3}$ and molar concentration ~
A saline solution con 1-write given information and convert to appropriate units 2-use formula c=n/v (ii) ~ calculating mass o	minins 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? $C = ?$ $n = 0.90 \text{ g NaCl x} \text{mol} = 0.0154 \text{ mol NaCl}$ $V = 100 \text{ mK} \times \frac{1 \text{ L}}{1000 \text{ mK}} = 0.1 \text{ L}$ $C = \frac{n}{V} = \frac{0.015 \text{ mol}}{0.1 \text{ L}} = \frac{0.15 \text{ mol}}{L} / \frac{0.15 \text{ mol}}{0 \text{ m}^3}$
A saline solution con 1-write given information and convert to appropriate units 2-use formula c=n/v (ii) ~ calculating mass o 0.5g of calcium hyd	Intains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? $C = ?$ $n = 0.90 \text{ g NaCl x} \underbrace{\text{mol}}_{58 44 \text{ g}} = 0.0154 \text{ mol NaCl}$ $V = 100 \text{ mL x} \underbrace{1 \text{ L}}_{1000 \text{ mL}} = 0.1 \text{ L}$ $C = \underbrace{n}_{V} = \underbrace{0.015 \text{ mol}}_{0.1 \text{ L}} = \underbrace{0.15 \text{ mol}}_{L} / \underbrace{0.15 \text{ mol}}_{0 \text{ m}^3}$ and molar concentration ~ draxide is added to 10 mL of water. What is its mass concentration (gdm ⁻³) and molar concentration (molL ⁻¹)?
A saline solution con 1-write given information and convert to appropriate units 2-use formula c=n/v (i) ~ calculating mass a 0.5g of calcium hyd 1-write given	Intains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? $C = ?$ $n = 0.90 \text{ g NaCl } \underline{x} mol = 0.0154 \text{ mol NaCl}$ $V = 100 \text{ mL} \times \underline{1 \text{ L}} = 0.1 \text{ L}$ $C = \underline{n} = \underline{0.015 \text{ mol}} = \underline{0.15 \text{ mol}} \frac{0.15 \text{ mol}}{L} \frac{0.15 \text{ mol}}{0 \text{ m}^3}$ and molar concentration ~ drowside is added to 10 mL of water. What is its mass concentration (gdm ⁻³) and molar concentration (molL ⁻¹)? Solute = 0.5g Ca (OH)_2 \times \underline{mol} = 0.00675 \text{ mol Ca (OH)}_2
A saline solution con 1-write given information and convert to appropriate units 2-use formula c=n/v (i) ~ calculating mass o 0.5g of calcium hyd 1-write given information	ntains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? $c = ?$ $n = 0.90 g \text{ NaCl x mol} = 0.0154 \text{ mol NaCl}$ $v = 100 \text{ mL x} - 1 \text{ L} = 0.1 \text{ L}$ $r = 0.00 \text{ mL x} = 0.1 \text{ L}$ $C = \frac{n}{V} = \frac{0.015 \text{ mol}}{0.1 \text{ L}} = \frac{0.15 \text{ mol}}{L} / \frac{0.15 \text{ mol}}{0 \text{ m}^3}$ and molar concentration ~ draxide is added to 10 mL of water. What is its mass concentration (gdm ⁻³) and molar concentration (molL ⁻¹)? Solute = 0.5g Ca(0H) ₂ x mol = 0.00675 mol Ca(0H) ₂
A saline solution con 1-write given information and convert to appropriate units 2-use formula c=n/v (ii) ~ calculating mass o 0.5 g of calcium hyd 1-write given information and convert to	Intains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? $C = ?$ $n = 0.90 \text{ g NaCl x} \underbrace{\text{mol}}_{58 44 \text{ g}} = 0.0154 \text{ mol NaCl}$ $V = 100 \text{ mK x} \underbrace{1 \text{ L}}_{1000 \text{ mK}} = 0.1 \text{ L}$ $C = \underbrace{n}_{V} = \underbrace{0.015 \text{ mol}}_{0.1 \text{ L}} = \underbrace{0.15 \text{ mol}}_{L} / \underbrace{0.15 \text{ mol}}_{0.13}$ and molar concentration ~ draxide is added to 10 mL of water. What is its mass concentration (gdm ⁻³) and molar concentration (molL ⁻¹)? Solute = 0.5g Ca(OH)_{2} \times \underbrace{\text{mol}}_{74.1 \text{ g}} = 0.00675 \text{ mol Ca(OH)}_{2} $V = 10 \text{ mK x} \underbrace{dm^{3}}_{0.01 \text{ dm}^{3}} = 0.01 \text{ dm}^{3}$
A saline solution con 1-write given information and convert to appropriate units 2-use formula c=n/v (i) ~ calculating mass o 0.5g of calcium hyd 1-write given information	ntains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? $c = ?$ $n = 0.90 g \text{ NaCl x mol} = 0.0154 \text{ mol NaCl}$ $v = 100 \text{ mL x} \frac{1 \text{ L}}{1000 \text{ mL}} = 0.1 \text{ L}$ $C = \frac{n}{V} = \frac{0.015 \text{ mol}}{0.1 \text{ L}} = \frac{0.15 \text{ mol}}{L} / \frac{0.15 \text{ mol}}{0 \text{ m}^3}$ and molar concentration ~ draxide is added to 10 mL of water. What is its mass concentration (gdm ⁻³) and molar concentration (molL ⁻¹)? Solute = 0.5g Ca(0H) ₂ x mol = 0.00675 mol Ca(0H) ₂
A saline solution con 1-write given information and convert to appropriate units 2-use formula c=n/v (i) ~ calculating mass o 0.5g of calcium hyd 1-write given information and convert to	Intains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration? $C = ?$ $n = 0.90 \text{ g NaCl x} \underbrace{\text{mol}}_{58 44 \text{ g}} = 0.0154 \text{ mol NaCl}$ $V = 100 \text{ mK x} \underbrace{1 \text{ L}}_{1000 \text{ mK}} = 0.1 \text{ L}$ $C = \underbrace{n}_{V} = \underbrace{0.015 \text{ mol}}_{0.1 \text{ L}} = \underbrace{0.15 \text{ mol}}_{L} / \underbrace{0.15 \text{ mol}}_{0.13}$ and molar concentration ~ draxide is added to 10 mL of water. What is its mass concentration (gdm ⁻³) and molar concentration (molL ⁻¹)? Solute = 0.5g Ca(OH)_{2} \times \underbrace{\text{mol}}_{74.1 \text{ g}} = 0.00675 \text{ mol Ca(OH)}_{2} $V = 10 \text{ mK x} \underbrace{dm^{3}}_{0.01 \text{ dm}^{3}} = 0.01 \text{ dm}^{3}$

(iii) ~ calculating amount of solute (grams) ~ A saturated solution of CaSOy (aq) has a concentration of 0.0154 mol/L. A student takes 65 mL of the solution and evaporates it. What mass is left?

1-write given information	C = 0.0154 mol/L
and convert to	n = ?
appropriate units	$v = 65 \text{mk} \times \underline{l} \underline{L} = 0.065 \text{L}$
	1000 ml
2- use formula	c=n n=cv = (0.0154 mol /)(0.0652) = 0.001001 mol CaSOy
c = n/v	\overline{v}
3- convert mol to g	$0.00 00 \text{ mot } CaSO_{y} \times 136.14 g = 0.136g$
	MOT

Determine the mass of solu	lute (grams) \sim ute present in a 500 cm ³ solution of 0.100 moldm ⁻³ silver nitrate.
write given information	C= 0.100 mol/dm ³
and convert to	n = ?
appropriate units	$V = 500 cm^3 \times dm^3 = 0.5 dm^3$ /000 cm ³
use formula	$n = cv = (0.100 \text{ mol dm}^{-3})(0.5 \text{ dm}^{-3})$
c = n/v	= 0.05 mol Ag NO3
convert mol to g	$0.05 \text{ mot} \text{ AgNO}_3 \times \underline{169.88 \text{ g}} = \underline{8.49 \text{ g}}$
$) \sim calculating solution volWhat volume of 0.25 m$	lume ~ nol/L solution can be made using 14g of sodium hydroxide ?
write given information	C = 0.25 mol/L
and convert to	$n = 14gNaOH \times \frac{mol}{39.99} = 0.35009 mol$
appropriate units	
	v = ?
- use formula	C = n $v = n$ = 0.35009 met = 1.4 L
c = n/v	V C 0.25 mot/L

60.5 cm³ of HNO3 are required to react with 25.0 mL of 1.00 M Ba (OH)2 solution. to produce barium nitrote and water.

what is the molarity of HNO3 solution?

1-write a chemical equation	$HNO_3 + B_a(OH)_2 \longrightarrow B_a(NO_3)_2 + H_2O$
2-balance the equation	$2 HNO_3 + B_a(OH)_2 \longrightarrow B_a(NO_3)_2 + 2 H_2O$
3- calculating moles of given	25.0 mL Ba(OH), x <u>L</u> x <u>1.00 mol</u> = 0.025 mol Ba(OH),
	1000 pt 1
5 - convert mol of one substance	$0.025 \text{ mol}Ba(0H)_2 \times 2 \text{ mol}HNO_3 = 0.05 \text{ mol}HNO_3$
to the needed substance	l mot Ba(OH)z
6 - calculate concentration c=n	C = n <u>0.05 mol HNO3 x 1000 cm² = 0.826 mol L⁻¹</u>
V	V 60.5 cm ³ L