When more than one reactant takes place in a chemical reaction, they will break apart and reform into products \rightarrow inks there is exactly the same amount of each, one reactant will be completely consumed and one will be leftover (limiting reactant: the reactant completely used up in a chemical reaction. The amount of product is limited by the quantity of this reactant excess reactant : the reactant remaining after the completion of a chemical reaction.
ex:

4 bike frames

2 leftover frames

* the wheels limited how many
complete bikes could be produced
\therefore wheels are limiting reactant
\longrightarrow by determining which reactant is limiting allows a calculation of theoretical maximum yield.

Example problems

(i) ~ Determining limiting and excess reactants \sim
50.0 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ is reacted with 75.0 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ to produce water and N_{2}. Determine the limiting and excess reactants.

1- write a chemical equation $\quad \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
2-balance the equation $\quad 2 \mathrm{~N}_{2} \mathrm{H}_{4}+\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~N}_{2}$

84H28
3- calculate number of moles for each reactant
$50.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4} \times \frac{\mathrm{mol}}{32.06 \mathrm{~g}}=1.56 \mathrm{~mol} \quad 75.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4} \times \frac{\mathrm{mol}}{92.02 \mathrm{~g}}=0.815 \mathrm{~mol}$
4 - divide moles of reactants by coefficient
$1.56 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4} \div 2=0.780 \mathrm{~mol} \quad 0.815 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4} \div 1=0.815 \mathrm{~mol}$ $\therefore \mathrm{N}_{2} \mathrm{H}_{4}$ is limiting reactant and $\mathrm{N}_{2} \mathrm{O}_{4}$ is excess reactant
(ii) ~ Determining how much product can be produced and how much of excess will be left over \sim
a) How many grams of $\mathrm{lead}(11)$ chloride are produced from the reaction of 15.3 g of NaCl and 60.8 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$?
b) How many grams will be left over of the excess reactant?

1- write a chemical equation
2-balance the equation

$$
\begin{gathered}
\mathrm{NaCl}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbCl}_{2}+\mathrm{NaNO}_{3} \\
2 \mathrm{NaCl}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbCl}_{2}+2 \mathrm{NaNO}_{3} \\
2 \& \mathrm{Na}_{2} \\
2 \mathrm{Cl} 2 \\
2 \mathrm{NO}_{3} \mathrm{VZ}
\end{gathered}
$$

5 - convert mol of limiting to g of product $0.262 \mathrm{~mol} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{PbCl}}{2 \mathrm{~mol} \mathrm{NaCl}} \times \frac{278.11 \mathrm{~g}}{\mathrm{~mol}}=36.4 \mathrm{~g} \mathrm{PbCl}_{2}$

6 - convert mol of limiting to g of excess and find difference

$$
0.262 \mathrm{~mol} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{No}_{3}\right)_{2}}{2 \mathrm{~mol} \mathrm{NaCl}} \times \frac{331.22 \mathrm{~g}}{\mathrm{~mol}}=\frac{43.39 \mathrm{~g} \text { of } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \text { will react }}{60.8 \mathrm{~g}-43.39 \mathrm{~g}=17.4 \mathrm{~g} \text { left }}
$$

(iii) ~ Determining maximum yield of product given limiting reactant ~

3 mol of $\mathrm{C}_{3} \mathrm{H}_{8}$ is reacted with excess oxygen $\left(\mathrm{O}_{2}\right)$. Determine the maximum mass of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ that can be produced.
1- write a chemical equation

$$
\begin{array}{rl}
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} & \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
3 & \mathrm{C} 23 \\
8 & \mathrm{H} 28 \\
10 \geq 0 \mathrm{O} \% 10
\end{array}
$$

2-balance the equation

3-write information underneath

$$
\underset{3 \mathrm{~mol} \text { (limiting) }}{\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2}} \longrightarrow \underset{9}{3 \mathrm{CO}_{2}}+\frac{4 \mathrm{H}_{2} \mathrm{O}}{? 9}
$$

4 - convert mol of one substance $3 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{3 \text { mol } \mathrm{CO}_{2}}{1 \text { mod } \mathrm{H}_{8}} \times \frac{44.01 \mathrm{~g}}{\text { mot }}=396.09 \mathrm{~g} \mathrm{CO}$
to the needed substance

$$
3 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{4 \text { mot }^{2} \mathrm{H}}{1 \mathrm{mor}_{3} \mathrm{H}_{8}} \times \frac{18.02 \mathrm{~g}}{\text { mot }}=216.24 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}
$$

(iv) ~ Determining maximum yield \sim

Calculate the maximum mass of ACCl_{3} that can be proved from a reaction of 2.80 g of aluminum and 4.15 g of chlorine gas.

1-write a chemical equation
2-balance the equation

3- calculate number of moles for each reactant

4 - divide moles of reactants by coefficient

5 - convert mol of limiting to g of product

$$
\begin{aligned}
& \mathrm{Al}+\mathrm{Cl}_{2} \rightarrow \mathrm{AlCl}_{3} \\
& 2 \mathrm{Al}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{AlCl}_{3} \\
& 2 \% \mathrm{Al} \% 2 \\
& 6 \geqslant \mathrm{Cl} \$ 6
\end{aligned}
$$

$$
2.80 \mathrm{~g} \mathrm{Al} \times \frac{\mathrm{mol}}{26.98 \mathrm{~g}}=0.104 \mathrm{~mol} \quad 4.15 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{\mathrm{mol}}{70.9 \mathrm{~g}}=0.0585 \mathrm{~mol}
$$

$$
0.104 \mathrm{~mol} \mathrm{Al} \div 2=0.052 \mathrm{~mol} \quad 0.0585 \mathrm{~mol} \mathrm{cl}_{2} \div 3=0.0195 \mathrm{~mol}
$$

$$
\therefore A l \text { is in excess }
$$

$$
\therefore \mathrm{cl}_{2} \text { limiting }
$$

$$
0.0585 \mathrm{~mol} \mathrm{Cl}_{2} \times \frac{2 \mathrm{~mol} \mathrm{AlCl}_{3}}{3 \mathrm{molCl}} \times \frac{133.33 \mathrm{~g}}{\operatorname{mot}}=5.20 \mathrm{~g} \text { of } \mathrm{AlCl}_{3}
$$

* in order to speed up dissolving: (1) mix the solution - helps distribute solute particles within solvent
(2) heat the solution -more kinetic energy, : solutes collide and interact with solvent more
* saturated solution : the maximum amount of solute dissolved within solvent. Adding more solute beyond this will not dissolve concentration: quantity of moles (n) or grams dissolved in one $\mathrm{dm}^{3}(L)$ of solution

Example problems

(i) ~ calculating molar concentration ~

A saline solution contains 0.90 g NaCl dissolved in 100 mL of solution. What is the molar concentration?
1- write given

$$
\begin{aligned}
& c=? \\
& n=0.90 \mathrm{~g} \mathrm{NaCl} \times \frac{\mathrm{mol}}{58.44 \mathrm{~g}}=0.0154 \mathrm{~mol} \mathrm{NaCl} \\
& v=100 \mathrm{mK} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.1 \mathrm{~L}
\end{aligned}
$$

information
and convert to
appropriate units

2- use formula
$c=n / v$
$c=\frac{n}{v}$
$=\frac{0.015 \mathrm{~mol}}{0.1 \mathrm{~L}}$
$=0.15 \frac{\mathrm{~mol}}{\mathrm{~L}} /$
$0.15 \frac{\mathrm{~mol}}{\mathrm{dm}^{3}}$
(ii) ~ calculating mass and molar concentration ~
0.5 g of calcium hydroxide is added to 10 mL of water. What is its mass concentration (gdm^{-3}) and molar concentration (mol L-1)?

1- write given \quad solute $=0.5 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{\mathrm{mol}}{74.1 \mathrm{~g}}=0.00675 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$
information
and convert to
appropriate units
$V=10 \mathrm{mk} \times \frac{\mathrm{dm}^{3}}{1000 \mathrm{~mL}}=0.01 \mathrm{dm}^{3}$
2- use formula mass $=\frac{\text { mass solute }}{c=n / v}=\frac{0.5 \mathrm{~g}}{0.01 \mathrm{dm}^{3}}=50 \mathrm{gdm}^{-3} \quad$ molar $=\frac{\mathrm{mol}}{\mathrm{concentration}}=\frac{0.00675 \mathrm{~mol}}{0.01 \mathrm{dm}^{3}}=0.68 \mathrm{moldm}^{-3}$
(iii) ~ calculating amount of solute (grams) ~

A saturated solution of $\mathrm{CaSO}_{4}(\mathrm{aq})$ has a concentration of $0.0154 \mathrm{~mol} / \mathrm{L}$.
A student takes 65 mL of the solution and evaporates it. What mass is left?
$\begin{aligned} \text { 1- write given information } & C=0.0154 \mathrm{~mol} / \mathrm{L} \\ \text { and convert to } & n=? \\ \text { appropriate units } & V=65 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.065 \mathrm{~L}\end{aligned}$
$\begin{array}{cc}\text { 2- use formula } \\ c=n / v\end{array} \quad c=\frac{n}{v} \quad n=c V=(0.0154 \mathrm{molx})(0.0654)=0.001001 \mathrm{~mol} \mathrm{CaSO}_{4}$
3- convert mol tog $0.001001 \mathrm{mot}_{\mathrm{CaSO}}^{4} \times \frac{136.14 \mathrm{~g}}{\text { mot }}=0.136 \mathrm{~g}$

Solutions cont.
(iv) ~ calculating amount of solute (grams) ~

Determine the mass of solute present in a $500 \mathrm{~cm}^{3}$ solution of $0.100 \mathrm{moldm}^{-3}$ silver nitrate.
1- write given information and convert to

$$
\begin{aligned}
& c=0.100 \mathrm{~mol} / \mathrm{dm}^{3} \\
& n=? \\
& v=500 \mathrm{~cm}^{3} \times \frac{\mathrm{dm}^{3}}{1000 \mathrm{~cm}^{3}}=0.5 \mathrm{dm}^{3}
\end{aligned}
$$ appropriate units

2- use formula

$$
c=n / v
$$

$$
\begin{aligned}
n=c v & =\left(0.100 \mathrm{moldm}^{-3}\right)\left(0.5 \mathrm{dm}^{3}\right) \\
& =0.05 \mathrm{~mol} \mathrm{Ag} \mathrm{NO}_{3}
\end{aligned}
$$

3- convert mol to g

$$
0.05 \text { mot } \mathrm{AgNO}_{3} \times \frac{169.88 \mathrm{~g}}{\mathrm{mot}}=8.49 \mathrm{~g}
$$

(v) ~ calculating solution volume ~

What volume of $0.25 \mathrm{~mol} / \mathrm{L}$ solution can be made using 14 g of sodium hydroxide?
1- write given information and convert to appropriate units

$$
\begin{aligned}
& C=0.25 \mathrm{~mol} / \mathrm{L} \\
& n=14 \mathrm{~g} \mathrm{NaOH} \times \frac{\mathrm{mol}}{39.99 \mathrm{~g}}=0.35009 \mathrm{~mol} \\
& v=?
\end{aligned}
$$

2- use formula
$c=n / v$

$$
c=\frac{n}{v} \quad v=\frac{n}{c}=\frac{0.35009 \operatorname{mot}}{0.25 \mathrm{mot} / \mathrm{L}}=1.4 \mathrm{~L}
$$

Solution Stoichiometry

Example problems

(i) ~ calculating product mass from reactant ~

Calcium chloride reacts with phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ to produce calcium phosphate and hydrochloric acid, HCl .
How many grams of calcium phosphate can be produced if $2500 \mathrm{~cm}^{3}$ of 0.250 M calcium chloride reacts with excess phosphoric acid?
1-write a chemical equation $\quad \mathrm{CaCl}_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{HCl}$
2-balance the equation $\quad 3 \mathrm{CaCl}_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{HCl}$
3- calculating moles of given $\quad n=v C=\left(2500 \mathrm{~cm}^{3} \times \frac{\mathrm{K}}{1000 \mathrm{~cm}^{3}}\right) \times 0.250 \frac{\mathrm{~mol}}{\mathrm{k}}=0.625 \mathrm{~mol} \mathrm{CaCl} \mathrm{Cl}_{2}$

6 -convert mol to mass $\quad 0.208 \mathrm{~mol}^{\left(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \times \frac{310.18 \mathrm{~g}}{\operatorname{mgt}}=64.5 \mathrm{~g} \mathrm{~g}\right.}$
(ii) ~ calculating reactant volume ~

How many mililiters of 1.50 M nitric acid $\left(\mathrm{HNO}_{3}\right)$ is required to react with 100.0 g of cuprous oxide in the following unbalanced equation:

$$
\mathrm{HNO}_{3}+\mathrm{Cu}_{2} \mathrm{O} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

1-balance the equation $\quad 14 \mathrm{HNO}_{3}+3 \mathrm{CO}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+7 \mathrm{H}_{2} \mathrm{O}$
2-calculating moles of given

$$
100.0 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O} \times \frac{\mathrm{mol}}{143.1 \mathrm{~g}}=0.6988 \mathrm{~mol}
$$

3 - convert mol of one substance to the needed substance

$$
\begin{aligned}
& 0.6988 \mathrm{mot} \mathrm{Cu}_{2} \mathrm{O} \times \frac{14 \mathrm{~mol} \mathrm{HNO}_{3}}{3 \mathrm{mot} \mathrm{Cu}_{2} \mathrm{O}}=3.2611 \mathrm{~mol} \\
& 3.2611 \mathrm{mot} \mathrm{HNO}_{3} \times \frac{K}{1.50 \mathrm{mot}} \times \frac{1000 \mathrm{~mL}}{K}=2170 \mathrm{~mL}
\end{aligned}
$$

(iii) ~ calculate concentration of reactant ~
$60.5 \mathrm{~cm}^{3}$ of HNO_{3} are required to react with 25.0 mL of $1.00 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution to produce barium nitrate and water. what is the molarity of HNO_{3} solution?

1- write a chemical equation
2 -balance the equation
3- calculating moles of given

5-convert mol of one substance to the needed substance

$$
\begin{gathered}
\mathrm{HNO}_{3}+\mathrm{Ba}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{HNO}_{3}+\mathrm{Ba}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
25.0 \mathrm{mK} \mathrm{Ba}(\mathrm{OH})_{2} \times \frac{\mathrm{K}}{1000 \mathrm{mk}} \times \frac{1.00 \mathrm{~mol}}{k}=0.025 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}
\end{gathered}
$$

$$
0.025 \mathrm{mot} \mathrm{Ba}(\mathrm{OH})_{2} \times \frac{2 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{mot} \mathrm{BaCOH})_{2}}=0.05 \mathrm{~mol} \mathrm{HNO}_{3}
$$

6- calculate concentration $c=\frac{n}{v}$

$$
C=\frac{n}{V} \quad \frac{0.05 \mathrm{~mol} \mathrm{HNO}_{3}}{60.5 \mathrm{~cm}^{3}} \times \frac{1000 \mathrm{~cm}^{2}}{L}=0.826 \mathrm{molL}^{-1}
$$

