Percentage yield

amount of product actually produced in a chemical reaction (mol or g)
\leftrightarrows this is often less than theoretical due to inefficiencies in recovering products or side reactions which reduce product
\rightarrow calculated by determining mass or volume of product
ratio of actual and
theoretical yields.
larger values $=$ more efficient

$$
\text { Percentage Yield }(\%)=\frac{\text { experimental yield }}{\text { theoretical yield }} \times 100 \%
$$

amount of product produced in a chemical reaction assuming the limiting reactant is completely used up. (mol or g) \longrightarrow calculated stoichiometrically using the limiting reactant

Example problems

(i) 36 g of $\mathrm{tin}(\mathrm{IV})$ phosphate, $\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}$, reacts with 36 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to make tin (IV) carbonate and sodium phosphate. If $29.8^{3} \mathrm{~g}^{\text {of }} \mathrm{tin}^{(i v)}$ carbonate are actually formed, what is the percent yield?
1- write a chemical equation

$$
\begin{aligned}
& \mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2}+\mathrm{Na}_{3} \mathrm{PO}_{4} \\
& \mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}+6 \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 3 \mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2}+4 \mathrm{Na}_{3} \mathrm{PO}_{4}
\end{aligned}
$$

2-balance the equation
3- calculate number of moles for each reactant

$$
36 \mathrm{~g} \mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4} \times \frac{\mathrm{mol}}{736.01 \mathrm{~g}}=0.04891 \mathrm{~mol} 36 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol}}{105.99 \mathrm{~g}}=0.3397 \mathrm{~mol}
$$

4 - divide moles of reactants by coefficient

$$
\begin{aligned}
& 0.04891 \mathrm{~mol} \div 1=0.04891 \mathrm{~mol} \\
& \therefore \text { limiting }
\end{aligned}
$$

$$
0.3397 \mathrm{~mol} \div 6=0.05662 \mathrm{~mol}
$$

5- calculate mass of product (theoretical yield)

$$
\begin{aligned}
& 0.04891 \text { mot } \mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4} \times \frac{3 \text { mol } \mathrm{Sn}_{n}\left(\mathrm{CO}_{3}\right)_{2}}{1 \text { mel } \mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}} \times \frac{238.73 \mathrm{~g}}{\text { mot }}=35.0 \mathrm{~g} \mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2} \\
& \text { \% yield of } \mathrm{Sn}_{n}\left(\mathrm{CO}_{3}\right)_{2}=\frac{\text { experimental }}{\text { theoretical }} \times 100 \%=\frac{29.8 \mathrm{~g}}{35.0 \mathrm{~g}} \times 100=85 \%
\end{aligned}
$$

15 g of sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, reacts with excess iron (III) phosphate, $\mathrm{Fe}_{\mathrm{PO}}^{4}$, producing a 65.0% yield.
How many grams of sodium phosphate will actually be made?
1- write a chemical equation

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{FePO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Na}_{3} \mathrm{PO}_{4} \\
& 3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{FePO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \\
& 15 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{m \mathrm{mot}}{142.02 \mathrm{~g}} \times \frac{2 \mathrm{maNa}_{3} \mathrm{PO}_{4} \times \frac{163.94 \mathrm{~g}}{3 \mathrm{maNa}_{2} \mathrm{SO}_{4}}=11.543 \mathrm{~g}}{\text { mot }}
\end{aligned}
$$

4 - calculate experimental yield
experimental yield $=\frac{(\% \text { yield })(\text { theoretical })}{100}=\frac{(65 \%)(11.543 \mathrm{~g})}{100}=7.5 \mathrm{~g}$
(iii) What mass of silver could be formed if a large zinc wire is placed in a beaker containing 145.0 mL of $0.095 \mathrm{mold} \mathrm{m}^{-3}$ silver nitrate, AgNO_{3}, and allowed to react overnight? Reaction has 97% yield.

1- write and balance chemical equation
2 - determine mol of given $n=c \mathrm{~V}$

3 - calculate theoretical yield

4 - calculate experimental yield
$\mathrm{Zn}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
$n=c V=\left(\frac{0.095 \mathrm{~mol}}{d \mathrm{~m}^{3}}\right)\left(145 \mathrm{mK} \times \frac{\mathrm{L}}{1000 \mathrm{mK}}\right)=0.013775 \mathrm{~mol} \mathrm{AgNO}_{3}$
$0.013775 \mathrm{~mol} \mathrm{AgNO}_{3} \times \frac{2 \mathrm{mot}^{2} \mathrm{Ag}}{2 \mathrm{mot}^{2 g N O_{3}}} \times \frac{107.87 \mathrm{~g}}{\operatorname{mot}}=1.486 \mathrm{~g}$
experimental yield $=\frac{(\% \text { yield })(\text { theoretical })}{100}=\frac{(97 \%)(1.486 \mathrm{~g})}{100}=1.44 \mathrm{~g}$
some samples of compounds are composed of a mixture of different substances.

mass of the compound of interest (g)

Percentage of a
sample which is a specific product

$$
\text { Percentage Purity }(\%)=\frac{\text { mass of pure compound in sample }}{\text { total mass of sample }} \times 100 \%
$$

mass of the mixture in total (g)

Example problems

(i) A 12.00 g sample of a crystallised pharmeceutical product was found to contain 11.57 g of the active drug. Calculate the percentage purity of the sample of the drug.
use formula Percentage Purity $(\%)=\frac{\text { mass of active drug in sample }}{\text { total mass of sample }} \times 100 \%=\frac{11.57 \mathrm{~g}}{12.00 \mathrm{~g}} \times 100$

$$
=\quad 96.4 \%
$$

(ii) 15.0 g of 92.5% magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, is reacted with excess $\mathrm{H}_{3} \mathrm{PO}_{4}$ to produce water and magnesium phosphate. Calculate the mass of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that will be formed (assuming a 100% yield).

1- write a chemical equation

$$
\begin{aligned}
\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} & \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \\
3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} & \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

2 -balance the equation
3- Determine mass of pure sample
4. calculate mass of product (theoretical yield)

$$
\begin{aligned}
\text { mass of } \mathrm{Mg}(\mathrm{OH})_{2}=\frac{(\text { Percent purity })(\text { total mass of sample })}{100} & =\frac{(92.5 \%)(15.0 \mathrm{~g})}{100} \\
\text { in sample } & =13.875 \mathrm{~g}
\end{aligned}
$$

$$
13.875 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2} \times \frac{\text { mot }}{58.33 \mathrm{~g}} \times \frac{1 \mathrm{mot}}{3 \mathrm{mot} \mathrm{Mg}(\mathrm{OH})_{2}}\left(\mathrm{PO}_{4}\right)_{2} \times \frac{262.87 \mathrm{~g}}{\text { mot }}=20.8 \mathrm{~g}
$$

(iii) Automotive air bags inflate when solid sodium azide, NaN_{3}. decomposes explosively into sodium and nitrogen gas. What volume of nitrogen gas is formed if 120 g of 85% pure sodium azide decomposes. Assume STP conditions.

1- write a chemical equation
2 -balance the equation

$$
\mathrm{NaN}_{3} \longrightarrow \mathrm{Na}+\mathrm{N}_{2}
$$

3-determine mass of pure sample

$$
\begin{aligned}
\begin{aligned}
\text { mass of } \mathrm{NaN}_{3} \\
\text { in sample }
\end{aligned}=\frac{(\text { Percent purity })(\text { total mass of sample })}{100} & =\frac{(85 \%)(120 \mathrm{~g})}{100} \\
& =102 \mathrm{~g}
\end{aligned}
$$

4. calculate volume of product (theoretical yield)

$$
102 \mathrm{~g} \mathrm{NaN} 3 \times \frac{\mathrm{mot}}{65.02 \mathrm{~g}} \times \frac{3 \mathrm{~mol}}{2 \mathrm{~mol} / \mathrm{NaN}_{3}} \times \frac{22.7 \mathrm{dm}^{3}}{\mathrm{mot}}=53.4 \mathrm{dm}^{3}
$$

