Periodic Table of Elements

Metalloids mainly undergo covalent bonding with non-metals (but also ionic bonding)

> determine number of shells : period number

≯م∻					Helium 2 He
13	14	15	16	17	4.00
Boron 5 B 10.81	Carbon 6 C 12.01	Nitrogen 7 N 14.01	0xygen 8 0 16.00	9 F 19.00	Neon 10 Ne 20.18
13 Al 26.98	Silicon 14 Si 28.09	Phosphorus 15 P 30.97	Sulfur 16 S 32.07	Chlorine 17 Cl 35.45	Argon 18 Ar 39.95
Gallium 31 Ga 69.72	Germanium 32 Ge 72.61	Arsenic 33 As 74.92	Selenium 34 Se 78.96	35 Br 79.90	ктуртоп 36 Кг 83.80
49 In 14.82	50 50 50 118.71	Antimony 51 Sb 121.76	52 Te 127.60	lodine 53 1 126.90	Xenon 54 Xe 131.29
81 81 TI 204.38	82 Pb 207.20	Bismuth 83 Bi 208.98	Polonium 84 Po (209)	Astatine 85 At (210)	Radon 86 Rn (222)
113 Uut (284)	Ununquadium 114 Uuq (289)	115 Unup (288)	116 Uuh (293)	0hunseptium 117 Uus (294?)	Ununoctium 118 Uuo (294)

Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
Ho	Er	Tm	Yb
64.93	167.26	168.93	173.04
insteinium 99	Fermium 100	Mendelevium 101	Nobelium 102
Es	Fm	Md	No
(252)	(257)	(258)	(259)

> can predict the chemical formula of ionic compound by determining ionic charge of each element and crossing them

* metal first, non-metal second (suffix 'ide')

	e e	Icads to metallic properties	•
	· · · · · · · · · · · · · · · · · · ·	, ,	
$\oplus^{*} \oplus^{*} \oplus^{*} \oplus^{*} \longrightarrow$	📲 🕂 🔶 🖓 🖓 🕂 🕂 🖓 🗧 🕂 🕂 🗧 🗧 🗧 🗧 🗧	\rightarrow good clectrical and thermal	conductor
$\oplus^{\prime} \oplus^{\prime} \oplus^{\prime} \oplus^{\prime} \oplus^{\prime}$	· · · · · · · · · · · · · · · · · · ·	Hk e ⁻ e e	
	any particular ato	m)	delocalized é free to move
metals have a weak hold	the positive nuclei of		and can transfer heat (energy)
On few valence electrons	metal atoms will be held	$\mathbf{F}_{\mathbf{a}}^{\mathbf{a}}$	and charge casily
: will release them	fogether by their attraction	1	0
	to the 'sea' of delocalized e	→ malleable	
	in a lattice) (+ (+) + loyers slide past
		$force \rightarrow \oplus $	+.+.+. +.+.+. each other and
			++++++++++++++++++++++++++++++++++++++
		$\oplus \oplus \oplus \oplus \oplus \oplus$	

Balancing chemical equations =

	J	•
Law of conservation of mas	s: matter cannot be created	or destroyed
	:. the number/mass	of atoms reacting must be equal to those in products
reactants	product	
A . D	A 12 V rech	le de seed
$A + b_2 -$	\rightarrow A 15 \times Not	, palanceo
		"" 's and of the seal have due to have believed
× 6	/855	13 in product than reactant - matty has been destroyed
1 <u>A</u> + <u>R</u>	$\rightarrow 7AR$ (hal	noces
2 4	K2 coefficie	ent means 2x molecule AB
Steps to solving some	equations	
	<u> </u>	
(i) Single displacement (A+	$BC \rightarrow AC + B$)	(ii) neutralization (base + acid -> H,O + salt)
1- balance Ni + 2 Aq NO	$3 \rightarrow Ni(NO_2) + Aq$	1 - balance $3C_{\alpha}(OH)_{2} + H_{3}PO_{y} \rightarrow H_{3}O + Ca_{3}(PO_{y})_{2}$
anion 2	X NO2 2	cation 21 Ca 3
	3	
2-balance Ni + 2 Aq NO2	$\rightarrow Ni(NO_3)_2 + 2Aq$	2 - balance $3C_{\alpha}(OH)_{2} + 2H_{3}PO_{\gamma} \rightarrow H_{2}O + Ca_{3}(PO_{\gamma})_{2}$
cation	2 Ag 12	anion 2 r Poy 2
		3-balance $3Ca(OH)_2 + 2H_3PO_4 \rightarrow 6H_2O + Ca_3(PO_4)_2$
		hydrogen 12 12 -2
(11) combustion $(C_{\gamma}H_{\gamma} + O_{2})$	$\rightarrow H_2 0 + (0_2)$	
		The and Triake
Cachea		TIPS and Tricks
Carbok		t if a columbration is present in both constants and
2 - haloace C. H. + Oa	\rightarrow 7H0 +600	and usts treat as an atom and balance
hydrogen		t save as vaca and hydrones while the end
·//···J···		* double check all coefficients are in lowest terms
3- balance C. H., + 407	\rightarrow 7 H,0 + 602	* double check each individual atom is balanced
Oxyach	2019	
4-2× 2C, H, + 190;	$\rightarrow 14 H_2O + 12 CO_2$	
iv) really ugly / difficult equation	n - algebra!	
l-assign variables a S	+ $b HNO_3 \rightarrow c H_2 SO_4$	$+ d NO_2 + e H_2O$
2- setup equations 5	a=c 3-let	one variable = 1 b=1 d=1
Н	b=2c+2e and	d substitute 5 a=c
N	h=d	H = 2c + 2e

 \bigcirc 2h - Ho , 2d , o

Atomic, Mokcular, and Molar Mass
atomic mass (A,): mass of a single atom in undefined mass units (")
molecular mass (Mr): mass of a single molecule in undefined mass units (u)
<u>calculating Mr</u>
G_{X} (NH) $S_{O_{11}} = 2(N) + 8(H) + 5 + 4(0)$
$\frac{2}{\sqrt{2}} = 2(14.01) + 8(1.01) + 32.07 + 4(16.00)$
$\frac{\times 2}{32.17} = \frac{28.02 + 8.08 + 32.07 + 64}{4}$
molar mass (M): mass of 1 mole (n) of a single molecule (g/mol)
> 6.02 × 10 ²³ A quantity, like "dozen" Unit: mol
Average Atomic Mass and Isotopic Abundance
Isotopes: two or more types of atoms that have the same atomic number but have different number of neutrons and mass
ex: Carbon-12 Carbon-13 Carbon-14 < all same element, C, but different mass
$p^{+} 6 p^{+} 6 p^{+} 6$ $n^{0} 6 n^{0} 7 n^{0} 8$
Average sharing mass; the switched average of the share is a sharly marrie cosole of the element
Average atomic mass. The weighted average mass of the atoms in a naturally - occoring sample of the dement
<u>Example problems</u>
(i) ~ determining average atomic mass from isotopic abundance ~
Calculate the average atomic mass of sulfur if 95.00% of all S atoms have a mass of 31.972 u, 0.76% has a mass
07 50.711 and 4.22 % have a mass of 53.7674.
$\frac{1 - \text{divide abundances}}{1 - \text{divide abundances}} = 0.95 \qquad \frac{0.76\%}{100} = 0.0076 \qquad \frac{4.22\%}{100} = 0.0422$
by icc icc icc
2 - mulliply by mass 0.95 (31.972) + 0.0076 (32.971) + 0.0422 (33.967) = 32.06 u
(ii) ~ determine accept abundance from average atomic mass ~
Naturally - occuring europium (Eu) consists of two isotopes with a mass of 151 and 153.
IF the average atomic mass of Europium is 151.97 u, what are the abundances?

1-setup equation (x)(151) + (1-x)(153) = 151.97

2 - expand and	$151 \times + 153 - 153 \times = 151.97$	
solve for x	-2x = -1.03	
	$\chi = 0.515$	
3 - calculate %	$E_{u} - 151 = 0.515 (100) E_{u} - 153 = 100 - 51.5$	
	= 51.5 % = 48.5 %	

Using a balanced chemical equation, we can convert between different reactants and products

