Periodic Table of Elements

Group -vertical column
\rightarrow all elements have same number of valence electrons ©: group 1 all have looter -
(1)

\rightarrow group $\#=$ number of valence \bar{e} (before Ca) * groups 13-17 tret as 3-7 * group 18 all full outer shell

Period -horizontal row

\rightarrow all elements have same number of electron shells ex: period 3 all have 3 electron shells

\rightarrow period \# = number of electron shells (before ca) \# elements in each period $=\max$ \# of electrons in each shell

$$
\text { period } \begin{aligned}
1 & =2 e^{-} \max \quad 3=8 e^{-} \max \\
2 & =8 e^{-} \max \quad 4=18 e^{-} \max
\end{aligned}
$$

Synthetic man-made elements, not noturally-occuring

Non-metals mainly undergo covalent bonding but also ionic bonding with metals general properties: poor ekectical//hermal conductors, doll, brittle, low m.p./b.p. mainly gas at room temp (some land s)

Metals mainly undergo metallic bonding but also ionic bonding with non-metals general properties : good ekestical/thermal conductors, shiny, malleable, high m.p./b.p. nearly all solid at room temp (only Hg is not - is ℓ)

Drawing atomic diagrams
(as atoms on table are neutral)
determine \bar{e} : same as atomic number

$$
=2 \text { shells }
$$

Metalloids mainly undergo covalent bonding with non-metals (but also ionic bonding)
ion: a charged atom. Can be positive (cation) or negative (anion)
cations are formed by an atom losing 1 or more electrons \longrightarrow anions are formed by an atom gaining 1 or more electrons typically, ions are formed because atoms 'seek' to have a full valence shell to become more stable
ex: Sodium has one valence é.
it can either lose 1 or gain 7. Easier to lose 1

\longrightarrow can predict what ion an atom will make by examining their group number :
Group $1=1$ valence \quad Group $2=2^{+} \quad$ Group $14(4)=$ mainly covalent \quad Group $16(6)=2^{-} \quad$ Group 18 (8) $=$ already full
\therefore will lose 1 $\therefore 1^{+}$Group $13(3)=3^{+} \quad$ Group $15(5)=3^{-}$
ex: Chlorine has seven valence é.
it can cither gain 1 or lose 7. Easier to gain 1

electronegativity: the tendency of a nucleus to attract bonding electrons. 1.e. the more it attracts, the more electronegative \longrightarrow depends on number of protons in nucleus

depends on distance befween nucleus and bonding electrons

ex:

* if the difference between electronegativities is very large (>1.4 on Pauling scale), one atom will pull an electron from another
lonic bonding: electrostatic force of attraction between negative and positive ions. * recall: positive and negative attract
metals tend to have a small number ($<$ half of their max) valence electrons low electronegativity \rightarrow tend to donate or remove their outer electron(s)
\rightarrow causing full inner shell to become its valence shell \therefore becoming cations (t)

> non-metals tend to have a large number ($>$ half of their max) valence electrons high electronegativity \rightarrow tend to recieve or accept their outer electron(s) \rightarrow causing valence to become full \therefore becoming anions $(-)$
\rightarrow can predict the chemical formula of ionic compound by determining ionic charge of each element and crossing them *metal first, non-metal second (suffix 'ide')
ex: potassium + nitrogen

potassium nitride

magnesivm chloride

$$
\rightarrow \text { freely dissolve in water }
$$

beryllium sulfide

* if the difference between electronegativities is small ($0-0.4$ on Pauling scale), electrons will be equally shared between atoms
covalent bonding: electrostatic attraction between positive nuclei and a shared pair of electrons
\longrightarrow tend to occur between non-metals as they have a larger valency and hold onto their electrons (high electronegativity)

so both Cl have full valence

Single covalent bond represented by line
$\ddot{0}:+\ddot{0} \rightarrow \dot{0} \dot{0}=\dot{0} \dot{0}$
double bond: 2 pairs shared
$: \ddot{N}+\ddot{N}: \rightarrow: N \equiv N:$
triple bond: 3 pairs shared can predict chemical formula of covalent compound similarly to ionic \longrightarrow determine number of bonds by drawing
ex: nitrogen + chlorine + oxygen

$$
\begin{array}{ccc}
: \ddot{N} \cdot & : \ddot{C l} \cdot & : \ddot{O}: \\
\text { needs } 3 & \text { needs } 1 & \text { needs } 2
\end{array} \quad \rightarrow \quad: \ddot{C l}-\ddot{N}=\ddot{0}
$$

NCO

* if the difference between electronegativities is moderately large ($>0.4>1.7$ on Pauling scale) electrons will be shared unevenly

Polar covalent bonding: the unequal sharing of electrons leading to partial charges in a molecule (polarity)

two polar molecules will attract one another with intermolecular bonding
Hydrogen bonding: electrostatic attraction between partially positive hydrogen $\left(\delta^{+}\right)$and a partially negative atom $\left(\delta^{-}\right)$

* if a group of identical atoms with low electronegativities (metals) are together, they will all shed their valence electrons

Metallic bonding: electrostatic attraction between the positive nuclei and negative delocalized electrons in a metal

Balancing chemical equations

Law of conservation of mass: matter cannot be created or destroyed
\therefore the number/mass of atoms reacting must be equal to those in products

Steps to solving some equations
(i) Single displacement $(A+B C \rightarrow A C+B)$ (ii) neutralization (base +acid $\rightarrow H_{2} O+$ salt)

(iii) combustion $\left(\mathrm{C}_{x} \mathrm{H}_{y}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\right)$

1-balance carbon	$\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \underset{6 \mathrm{C} 16}{\rightarrow} \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}$
2-balance hydrogen	$\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \xrightarrow{14 \mathrm{H}_{214} 7 \mathrm{H}_{2} \mathrm{O}}+6 \mathrm{CO}_{2}$

Tips and Tricks

* if a polyatomic ion is present in both reactants and products, treat as an atom and balance
* save oxygen and hydrogen until the end
* double check all coefficients are in lowest terms
* double check each individual atom is balanced
$\begin{gathered}\text { 3-balance } \\ \text { oxygen }\end{gathered} \mathrm{C}_{6} \mathrm{H}_{14}+\frac{19}{2} \mathrm{O}_{2} \xrightarrow{2 \mathrm{O} 19} 7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}$
4- $2 \mathrm{X} \quad 2 \mathrm{C}_{6} \mathrm{H}_{14}+19 \mathrm{O}_{2} \rightarrow 14 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{CO}_{2}$
(iv) really ugly/difficult equation - algebra!

1- assign variables $\quad a \mathrm{~S}+b \mathrm{HNO}_{3} \rightarrow c \mathrm{H}_{2} \mathrm{SO}_{4}+d \mathrm{NO}_{2}+e \mathrm{H}_{2} \mathrm{O}$
2- setup equations

$$
1=2 c+2(2 c)
$$

$$
\begin{aligned}
& 1=6 c \quad \frac{1}{6} \mathrm{~S}+1 \mathrm{HNO}_{3} \rightarrow \frac{1}{6} \mathrm{H}_{2} \mathrm{SO}_{4}+1 \mathrm{NO}_{2}+\frac{1}{3} \mathrm{H}_{2} \mathrm{O} \\
& 1 / 6=c \quad \therefore 1 / 6=a
\end{aligned} \quad
$$

$$
1 / 6=c \quad \therefore \quad 1 / 6=a
$$

$$
1=2(1 / 6)+2 e
$$

$$
\frac{1-1 / 3}{2}=\frac{2 e}{2}
$$

$$
1 / 3=e
$$

$$
\begin{aligned}
& \text { reactants product } \\
& A+B_{2} \longrightarrow A B \quad x \text { not balanced } \\
& \begin{array}{ll}
\mid A 1 & \text { less " } B \text { " in product than reactant - matter has been destroyed } \\
2 & 1
\end{array}
\end{aligned}
$$

Atomic, Molecular, and Molar Mass
atomic mass $\left(A_{r}\right)$: mass of a single atom in undefined mass units (u) molecular mass $\left(M_{r}\right)$: mass of a single molecule in undefined mass units (u) calculating M_{r}
Ex: $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=2(\mathrm{~N})+8(H)+\mathrm{S}+4(0)$

$$
\begin{aligned}
& =2(14.01)+8(1.01)+32.07+4(16.00) \\
& =28.02+8.08+32.07+64 \\
& =132.17 u
\end{aligned}
$$

molar mass (M) : mass of 1 mole (n) of a single molecule ($\mathrm{g} / \mathrm{mol}$)

$$
\rightarrow 6.02 \times 10^{23} \text { A quantity, like "dozen" Unit: mol }
$$

Average Atomic Mass and Isotopic Abundance

Isotopes: two or more types of atoms that have the same atomic number but have different number of neutrons and \therefore mass
ex: Carbon-12 Carbon-13 Carbon-14 $\quad \begin{array}{ccc}\text { Call same element, } C \text {, but different mass } \\ p^{+} 6 & p^{+} 6 & p^{+} 6\end{array} \quad \begin{aligned} & \text { all }\end{aligned}$

ρ_{n}^{+}	6	p^{+}	6	p^{+}	6
n^{8}	6	n^{6}	7	n^{8}	8

Average atomic mass: the weighted average mass of the atoms in a naturally-occuring sample of the element

Example problems

(i) \sim determining average atomic mass from isotopic abundance \sim

Calculate the average atomic mass of sulfur if 95.00% of all S atoms have a mass of $31.972 \mathrm{u}, 0.76 \%$ has a mass of 32.971 and 4.22% have a mass of $33.967 u$.
$\begin{gathered}1-\text { divide abundances } \\ \text { by } 100\end{gathered} \quad \frac{95.00 \%}{100}=0.95 \quad \frac{0.76 \%}{100}=0.0076 \quad \frac{4.22 \%}{100}=0.0422$
2 - multiply by mass $\quad 0.95(31.972)+0.0076(32.971)+0.0422(33.967)=32.06 u$
(ii) \sim determine percent abundance from average atomic mass \sim

Naturally-occuring europium (Eu) consists of two isotopes with a mass of 151 and 153.
If the average atomic mass of Europium is $151.97 u$, what are the abundances?
1 - setup equation $(x)(151)+(1-x)(153)=151.97$

2- expand and
 solve for x

$151 x+153-153 x=151.97$
$-2 x=-1.03$

$$
x=0.515
$$

3-calculate \%

$$
\begin{aligned}
\epsilon u-151 & =0.515(100) & \epsilon u-153 & =100-51.5 \\
& =51.5 \% & & =48.5 \%
\end{aligned}
$$

\sim if you know the amount of moles of a substance, you can determine its mass in (g) and vice-versa \sim

Dimensional analysis

to cancel units, divide by them \rightarrow move in a diagonal manner

Example problems

(i) $\underset{10.6 \text { grams of }}{\sim} \mathrm{AgNO}_{3}$ is 10.6 grams of AgNO_{3} is how many moles?
$10.6 \mathrm{~g} \mathrm{AgNO}_{3} \times \frac{\mathrm{mol}}{169.87 \mathrm{~g}}=0.0624 \mathrm{~mol}$
(ii) ~ moles \rightarrow mass \sim
$2.4 \mathrm{~mol} 5 \times \frac{32.07 \mathrm{~g}}{\mathrm{~mol}}=76.97 \mathrm{~g}$
(iii) ~ mass \rightarrow atoms \sim
how many atoms are their in 8.7 g of argon?
(iv) \sim molecules \rightarrow mass \sim
what is the mass of 9.4×10^{25} molecules of H_{2} ?
$8.7 \mathrm{~g} \operatorname{Ar} \times \frac{\mathrm{mot}}{39.95 \mathrm{~g}} \times \frac{6.02 \times 10^{23} \text { atoms }}{\text { mot }}=1.311 \times 10^{23}$ atoms $\quad 9.4 \times 10^{25}$ molecule/ $/ \mathrm{s} \times \frac{\mathrm{mbl}}{6.02 \times 10^{23} \mathrm{~mol} / \mathrm{fules}} \times \frac{2.02 \mathrm{~g}}{\mathrm{~g} .61}=315.42 \mathrm{~g}$
(v) ~ mass \longrightarrow atoms in molecule \sim
how many atoms of hydrogen are there in 2.3 grams of $\mathrm{NH}_{4} \mathrm{SO}_{2}$?
$2.3 \mathrm{~g} \mathrm{NH}_{4} \mathrm{SO}_{2} \times \frac{\text { nil }}{82.12 \mathrm{~g}} \times \frac{6.02 \times 10^{23} \text { molecules }}{\text { mol }} \times \frac{4 \text { atoms of } \mathrm{H}}{1 \text { molecule of } \mathrm{NH}_{4} \mathrm{SO}_{2}}=6.74 \times 10^{22}$ atoms

Using a balanced chemical equation, we can convert between different reactants and products

Example problems

(i) \sim converting mass of one substance to mass of another \sim

Aluminum oxide is decomposed using electricity to produce Aluminum and oxygen gas, O_{2}.
What mass of Al metal can be produced from 125 g of aluminum oxide?

(ii) \sim converting mass of one substance to atoms of another \sim

Nitrogen gas, N_{2} and sodium are produced in an automobile air bag. It is generated by the decomposition of sodium azide, $\mathrm{Na}_{\mathbf{3}}$. How many atoms of Na are produced when 80.0 g of N_{2} are generated in this reaction?

1- write a chemical equation
2-balance the equation

$$
\begin{aligned}
& \mathrm{NaN}_{3} \longrightarrow \mathrm{~N}_{2}+\mathrm{Na} \\
& 2 \mathrm{NaN}_{3} \longrightarrow 3 \mathrm{~N}_{2}+2 \mathrm{Na}
\end{aligned}
$$

$$
2: \mathrm{Na} 12
$$

$$
63 N 26
$$

3-write information underneath

$$
\begin{aligned}
& 2 \mathrm{NaN}_{3} \longrightarrow 3 \mathrm{~N}_{2}+2 \mathrm{Na} \\
& 80.0 \mathrm{~g} ?
\end{aligned}
$$

4 - convert mass to mol

$$
80.0 \mathrm{~g} N_{2} \times \frac{\mathrm{mol}}{28.02 \mathrm{~g}}=2.855 \mathrm{~mol}
$$

5-convert mol of one substance to the needed substance
$2.855 \mathrm{~mol} N_{2} \times \frac{2 \mathrm{~mol} \mathrm{Na}}{3 \mathrm{~mol} \mathrm{~N}}=1.903 \mathrm{~mol} \mathrm{Na}$
6 -convert mol to atoms

