FAREGEES

Guiding Questions

How does the structure of nucleic acids allow hereditary information to be stored?

How does the structure of DNA facilitate accurate replication?

Linking Questions

What makes RNA more likely to have been the first genetic material, rather than DNA?

How can polymerization result in emergent properties?

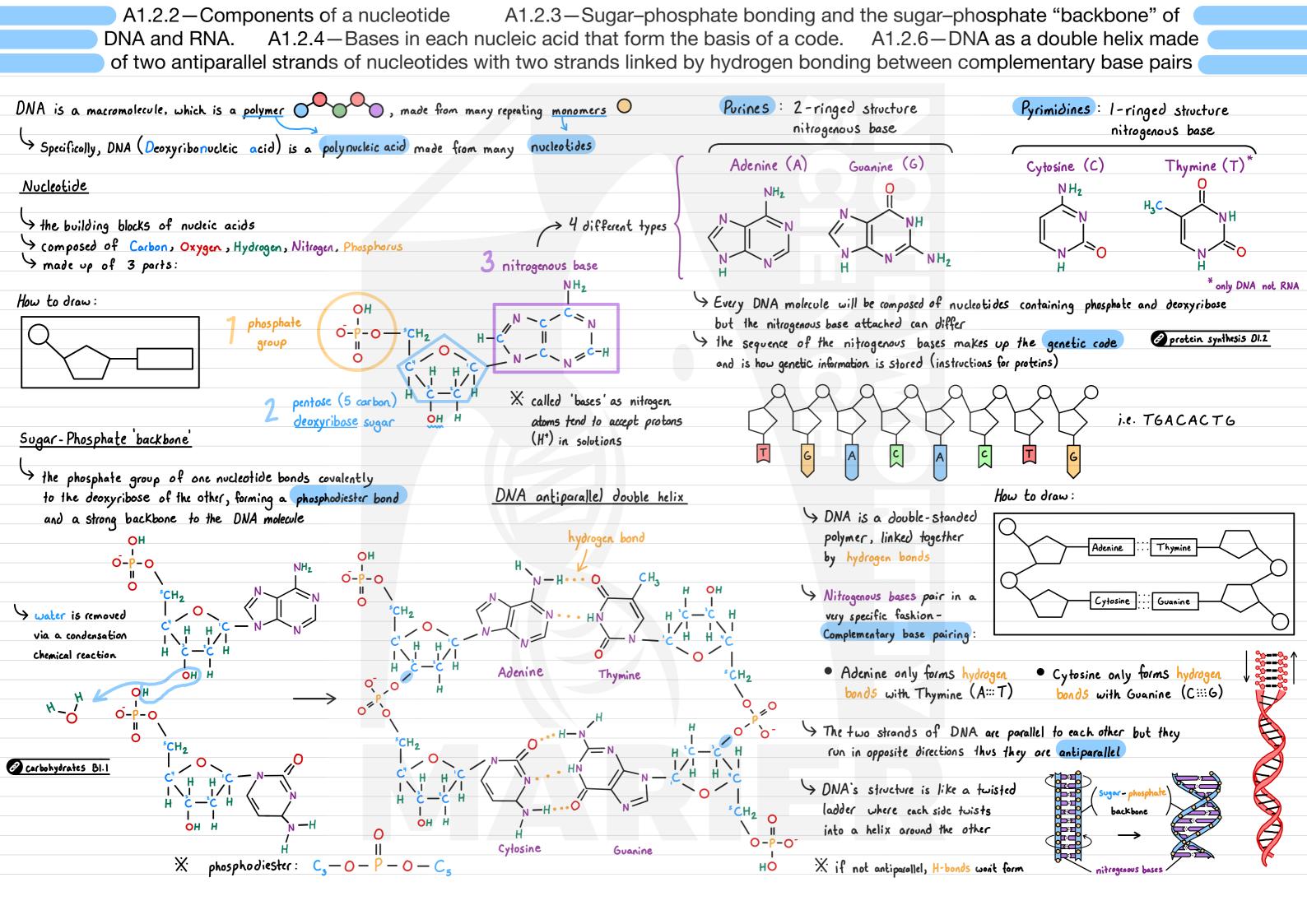
1 A

Theme: Unity and Diversity

Level of Organization: Molecules

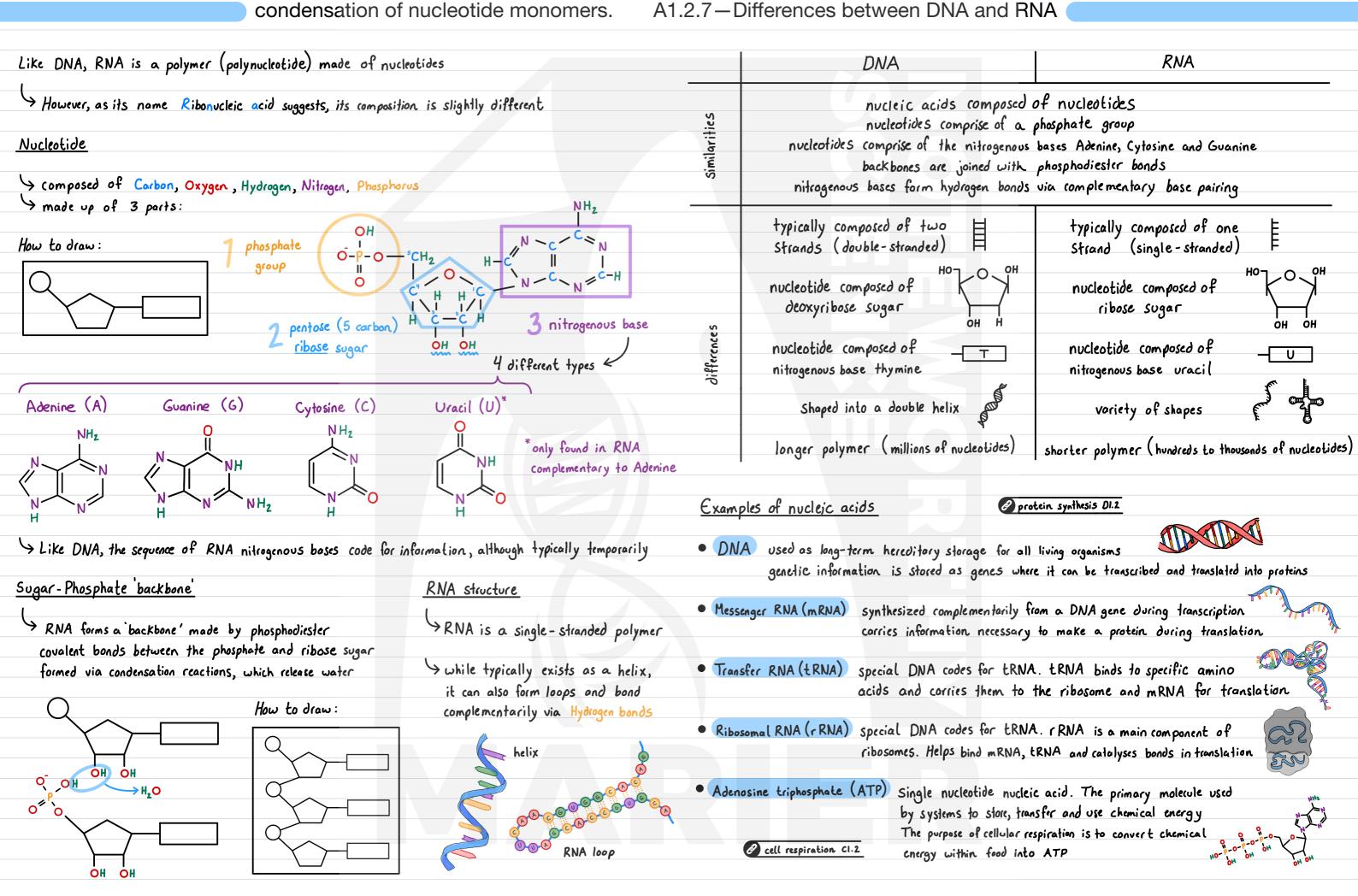
Written and drawn by:

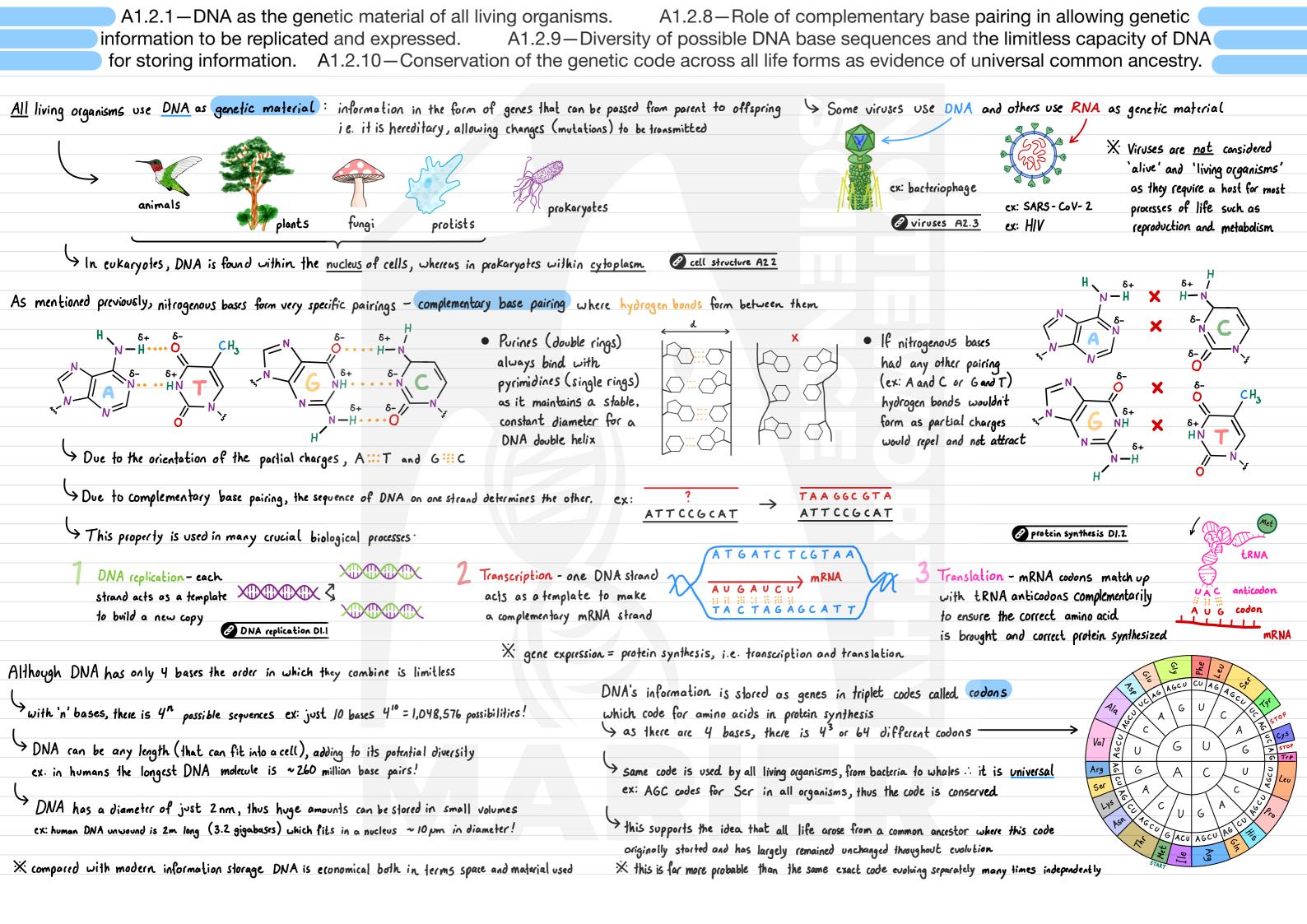
PETER MARIER



SL Learning Outcomes

A1.2.1	DNA as the genetic material of all living organisms	Some viruses use RNA as their genetic material but viruses are not considered to be living.			
A1.2.2	Components of a nucleotide	In diagrams of nucleotides use circles, pentagons and rectangles to represent relative positions of phosphates, pentose sugars and bases.			
A1.2.3	Sugar-phosphate bonding and the sugar-phosphate "backbone" of DNA and RNA	Sugar—phosphate bonding makes a continuous chain of covalently bonded atoms in each strand of DNA or RNA nucleotides, which forms a strong "backbone" in the molecule.			
A1.2.4	Bases in each nucleic acid that form the basis of a code	Students should know the names of the nitrogenous bases.			
A1.2.5	RNA as a polymer formed by condensation of nucleotide monomers	Students should be able to draw and recognize diagrams of the structure of single nucleotides and RNA polymers.			
A1.2.6	DNA as a double helix made of two antiparallel strands of nucleotides with two strands linked by hydrogen bonding between complementary base pairs	In diagrams of DNA structure, students should draw the two strands antiparallel, but are not required to draw the helical shape. Students should show adenine (A) paired with thymine (T), and guanine (G) paired with cytosine (C). Students are not required to memorize the relative lengths of the purine and pyrimidine bases, or the numbers of hydrogen bonds. Cytosine Guanine Adenine			
A1.2.7	Differences between DNA and RNA	Include the number of strands present, the types of nitrogenous bases and the type of pentose sugar. Students should be able to sketch the difference between ribose and deoxyribose. Students should be familiar with examples of nucleic acids.			
A1.2.8	Role of complementary base pairing in allowing genetic information to be replicated and expressed	Students should understand that complementarity is based on hydrogen bonding.			
A1.2.9	Diversity of possible DNA base sequences and the limitless capacity of DNA for storing information	Explain that diversity by any length of DNA molecule and any base sequence is possible. Emphasize the enormous capacity of DNA for storing data with great economy.			
A1.2.10	Conservation of the genetic code across all life forms as evidence of universal common ancestry	Students are not required to memorize any specific examples.			


HL Learning Outcomes

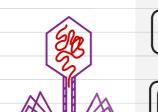

A1.2.11	Directionality of RNA and DNA	Include 5' to 3' linkages in the sugar-phosphate backbone and their significance for replication, transcription and translation.		
A1.2.12	Purine-to-pyrimidine bonding as a component of DNA helix stability	Adenine–thymine (A–T) and cytosine–guanine (C–G) pairs have equal length, so the DNA helix has the same three-dimensional structure, regardless of the base sequence.		
A1.2.13	Structure of a nucleosome	Limit to a DNA molecule wrapped around a core of eight histone proteins held together by an additional histone protein attached to linker DNA. Application of skills: Students are required to use molecular visualization software to study the association between the proteins and DNA within a nucleosome.		
A1.2.14	Evidence from the Hershey–Chase experiment for DNA as the genetic material	Students should understand how the results of the experiment support the conclusion that DNA is the genetic material. NOS: Students should appreciate that technological developments can open up new possibilities for experiments. When radioisotopes were made available to scientists as research tools, the Hershey–Chase experiment became possible.		
A1.2.15	Chargaff's data on the relative amounts of pyrimidine and purine bases across diverse life forms	NOS: Students should understand how the "problem of induction" is addressed by the "certainty of falsification". In this case, Chargaff's data falsified the tetranucleotide hypothesis that there was a repeating sequence of the four bases in DNA.		

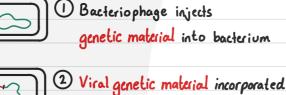
A1.2.4—Bases in each nucleic acid that form the basis of a code.

A1.2.5—RNA as a polymer formed by

A1.2.11—Directionality of RNA and DNA. HL A1.2.12—Purine-to-pyrimidine bonding as a component of DNA helix stability. A1.2.13—Structure of a nucleosome The directionality of DNA and RNA impacts biological processes: A more specific manner to describe the direction of DNA and RNA strands are by the orientation of the carbons in the pentose sugar **B** DNA replication DI.I DNA replication - DNA nucleotides are always new nucleotide added to the 3'end of the growing polynucleotide added here The 5' phosphate of the free nucleotide forms a phosphodiester bond with the deoxyribose at the Adenine 3' carbon : replication occurs 5' to 3' > This is because the nucleofides must face the direction of replication correct direction to fit into the enzyme's active site Transcription - RNA nucleotides are added to the 3' end of the growing mRNA polynucleotide Guanine 5' phosphate of the free nucleotide forms a phosphodiester bond protein synthesis D1.2 with the ribose at the 3' carbon : transcription occurs 5' to 3' numbered clockwise from oxygen in ring 3 Translation - mRNA carries sequence information for synthesizing X: You can extrapolate the ends a polypeptide (protein) as codons which determine the order amino acids are joined by ribozymes. The ribosome moves along in DNA only given one mRNA towards the 3' end. .: translation occurs 5' to 3' As mentioned previously, each nitrogenous base pair is composed of I purine Application of Skills The total length of DNA in a single human cell is ~2m which is (2 rings) and 1 pyrimidine (1 ring) contained in a ~ 10 pm nucleus - how? Explore nucleosome structure using DNA is wrapped twice around a core molecular visualization software composed of 8 proteins called histones at the following websites: http://earth.callutheran.edu/ Academic_Programs/Departments/BioDev/ omm/jsmol/nucleosome/nucleosome.html nucleosome is a structural unit comprising DNA linker DNA joins one https://www.rcsb.org/structure/2CV5 wrapped around an Due to complementary base octamer of histories nucleosome to the other https://www.rcsb.org/3d-view/jsmol/1aoi/1 pairing, no matter what the HI histone bound to linker DNA, > nucleosomes supercoil nitrogenous base sequence, the DNA molecule will have 3 rings across and organize into maintaining nucleosome structure https://proteopedia.org/wiki/index.php/ Nucleosome_structure constant diameter condensed chromosomes - I purine and I pyrimidine, maintaining a stable, regular double helix shape cell + nuclear division D2 chromosome

A1.2.14—Evidence from the Hershey–Chase experiment for DNA as the genetic material A1.2.15—Chargaff's data on the relative amounts of pyrimidine and purine bases across diverse life forms


- Since the late 1800s, it was known that chromosomes played a role in heredity but as they are roughly 50% proteins and 50% nucleic acids, it was unclear which chemical was responsible
- · Proteins were a strong contender to be the hereditary genetic material of living organisms due to their increased capacity for variety and complexity: DNA composed of only 4 types of nitrogenous bases whereas proteins are comprised of 20 types of amino acids thus it would allow more complexity


How did we determine DNA and not protein is the genetic material?

Hershey-Chase experiment

Background information

- The experiment uses the bacteriophage T2 virus which infect <u>E. coli</u> bacteria
- Bacteriophage is composed of a protein coat (capsid) which holds DNA
- It was unclear whether the virus parasitizes host using DNA or protein

into that of the host - hijacking it Hijacked bacterium creates new


viruses which burst out and spread

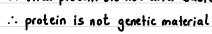
• Radio isotopes are unstable isotopes of elements which release energy in order to become more stable in the form of radiation or particles (radioactive decay), which can be detected by apparatus such as a Geiger counter > NOS: radioactive labelling as a technique become available post WWI and this technique now allowed scientists to trace chemicals in biological systems, allowing the following experiment to occur

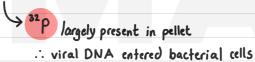
Methodology

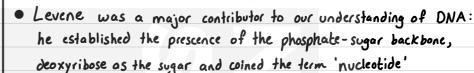
1) Two different bacteriophages were produced:

one with radioactive phosphorus (32P) which was incorporated into the DNA (and not protein as P is found in nucleic acids but not amino acids) : labelling DNA sone with radioactive sulfur (35S) which was incorporated into the protein coat (and not DNA as S is found in some amino acids but not nucleic acids) : labelling protein

2 Each set of labelled viruses were cultured with E. coli bacteria and allowed to infect the cells


3 Culture was put in blender to dislodge viruses and centrifuged to separate components by density


4) Supernatant and pellet analyzed for radioactivity: radioisotope found in pellet suggests genetic material as this is what was injected into bacteria by virus


Results

S largely present in supernatant not in pellet : viral protein did not enter bacterial cells

· DNA is likely genetic material

 However, he incorrectly hypothesized that DNA was composed of 4 repeating nucleotides (tetranucleotide) in equal base proportions

As a tetranucleotide is not adequately variable, Levene hypothesized DNA could not be the genetic moterial but rather proteins

How did we determine complementary base pairing in DNA? Chargaff's experiment

Levenes linear mode

photosynthesis Cl. 3

Methodology

• In order to test if DNA was a tetranucleotide, samples of DNA from a range of species were onalyzed to determine their nucleotide composition

> Paper chromatography was used to separate different DNA samples into their respective nitrogenous bases > UV spectrophotometry was then used to quantify the relative amounts of each base present

solvent travels up via capillary action, separating molecules based on chemical properties

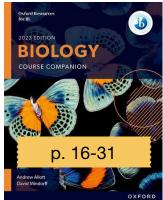
Results

DNA source	Adenine	Thymine	Guanine	Cytosine	
human	29.3	30.0	20.7	20.0	
octopus	33.2	31.6	17.6	17.6	
yeast	31.3	32.9	18.7	17.1	
maize	26.8	27.2	22.8	23.2	
wheat	27.3	27.1	22.7	22.8	
E. coli	24.7	23.6	26.0	25.7	
		.1.1		1.1	,

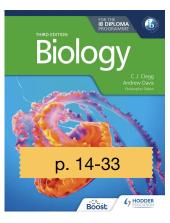
> across all DNA sources, the proportion of A and T were ~ equal, as were G and C \rightarrow proportion of purines (A,G) were regual to pyrimidines (T,C) * relative quantities varied

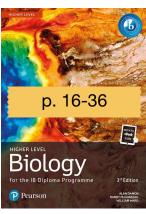
across species

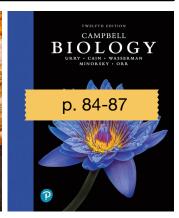
if tetranucleotides were the structure, proportion of all bases would be equal, i.e. 1:1:1:1 ... hypothesis falsified


NOS: in science, Knowledge claims are built using inductive reasoning, i.e. observations -> detect patterns -> form generalizations -> make conclusions about unobserved

Problem: inductive reasoning cannot give certainty as there is no way to be sure generalization is always true inductive generalizations are tentative, as new evidence can show them to be incorrect

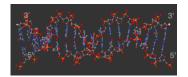

> Solution: falsification allows for certainty as we can show what is not true through counter-examples X nothing is 'proven' in science - evidence either supports or falsifies hypotheses

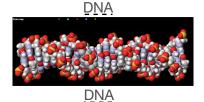


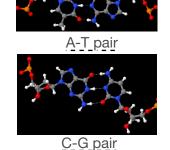

Textbooks

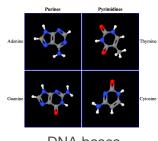


Simulators / Interactives

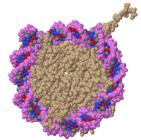

→ Articles

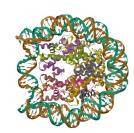

Fry, M. (2016). Dissolution of hypotheses in biochemistry: three case studies. History & Philosophy of the Life Sciences, 38(4). https://doi.org/10.1007/s40656-016-0118-x


Hershey, A. D., & Chase, M. (1952). INDEPENDENT FUNCTIONS OF VIRAL PROTEIN AND NUCLEIC ACID IN GROWTH OF BACTERIOPHAGE. The Journal of General Physiology, 36(1), 39–56. https://doi.org/10.1085/jgp.36.1.39


Simply Psychology. (2023, July 31). Karl Popper: Theory of Falsification. https://www.simplypsychology.org/karl-popper.html#:~:text=The%20Falsification%20Principle%2C%20proposed%20by,by%20observing%20a%20black%20swan.

→ 3D models





DNA bases

Nucleosome huma

Crystal structure of human nucleosome core particle

COMPLEX BETWEEN NUCLEOSOME CORE PARTICLE (H3,H4,H2A,H2B) AND 146 BP LONG DNA FRAGMENT