
Periodic Table of Elements

nearly all solid at room temp (only Hg is not - is R)

Metalloids mainly undergo coualent bonding with non-metals (but also ionic bonding)

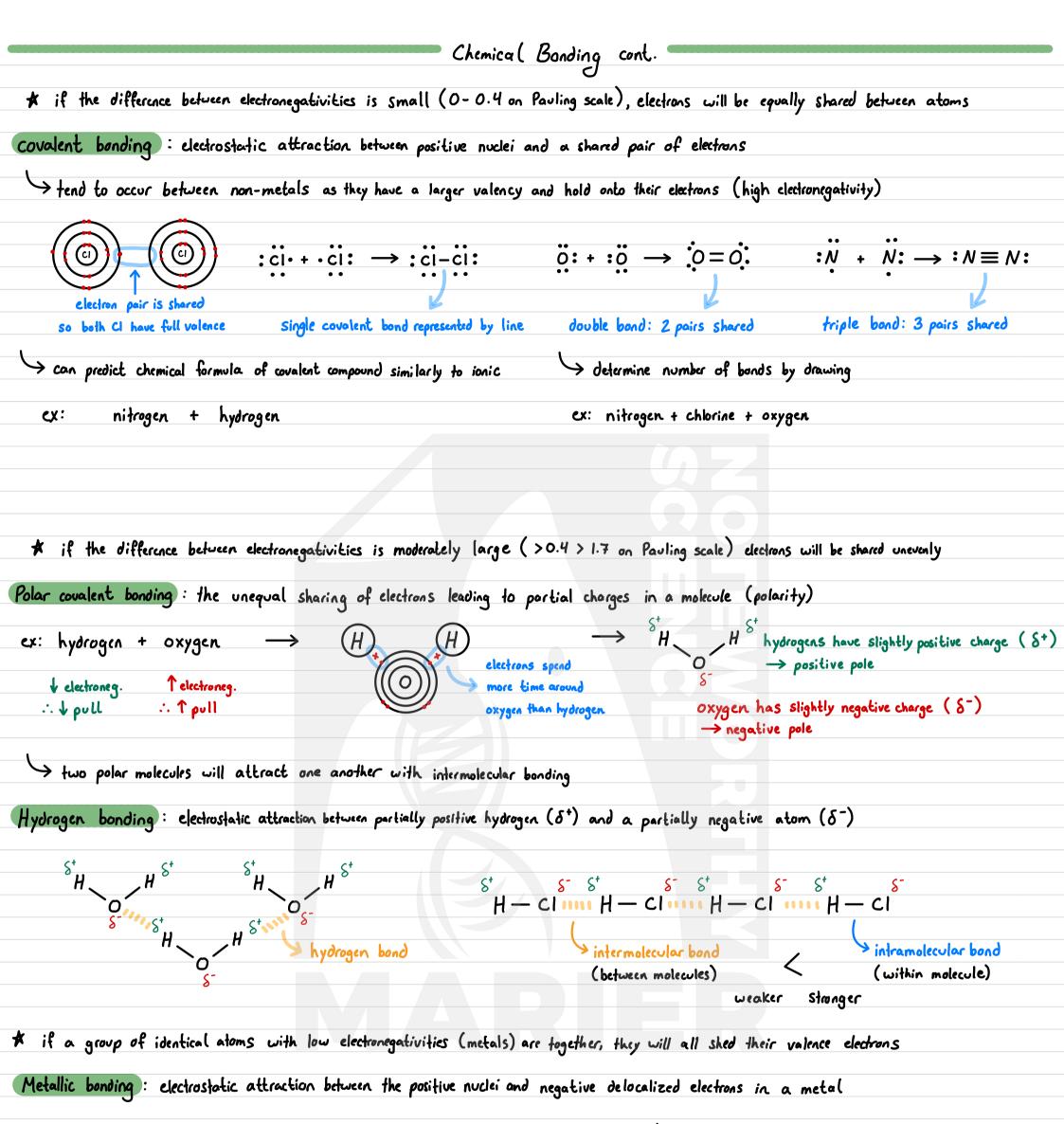
> determine number of shells : period number

 \rightarrow defermine n° : atomic mass - atomic number

>	ē
>	n®
>	P ⁺

$\rightarrow \rho^{+}$					Hélium 2
13	14	15	16	17	He 4.00
Boron 5 B 10.81	Carbon 6 C 12.01	Nitrogen 7 N 14.01	8 0 16.00	9 F 19.00	Neon 10 Ne 20.18
Aluminum 13 Al 26.98	Silicon 14 Si 28.09	Phosphorus 15 P 30.97	Sulfur 16 S 32.07	Chlorine 17 Cl 35.45	Argon 18 Ar 39.95
Gailium 31 Ga 69.72	Germanium 32 Ge 72.61	Arsenic 33 As 74.92	Selenium 34 Se 78.96	Bromine 35 Br 79.90	83.80
Indium 49 In 114.82	50 Sn 118.71	Antimony 51 Sb 121.76	52 Te 127.60	Iodine 53 1 126.90	Xenon 54 Xe 131.29
Thailium 81 TI 204.38	82 Pb 207.20	Bismuth 83 Bi 208.98	Polonium 84 Po (209)	Astatine 85 At (210)	Radon 86 Rn (222)
113 Uut (284)	Ununquadium 114 Uuq (289)	Ununpentium 115 Uup (288)	Ununhexium 116 Uuh (293)	Ununseptium 117 Uus (294?)	Ununoctium 118 Uuo (294)

Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
Ho	Er	Tm	Yb
164.93	167.26	168.93	173.04
99 Es (252)	Fermium 100 Fm (257)	Mendelevium 101 Md (258)	Nobelium 102 No (259)

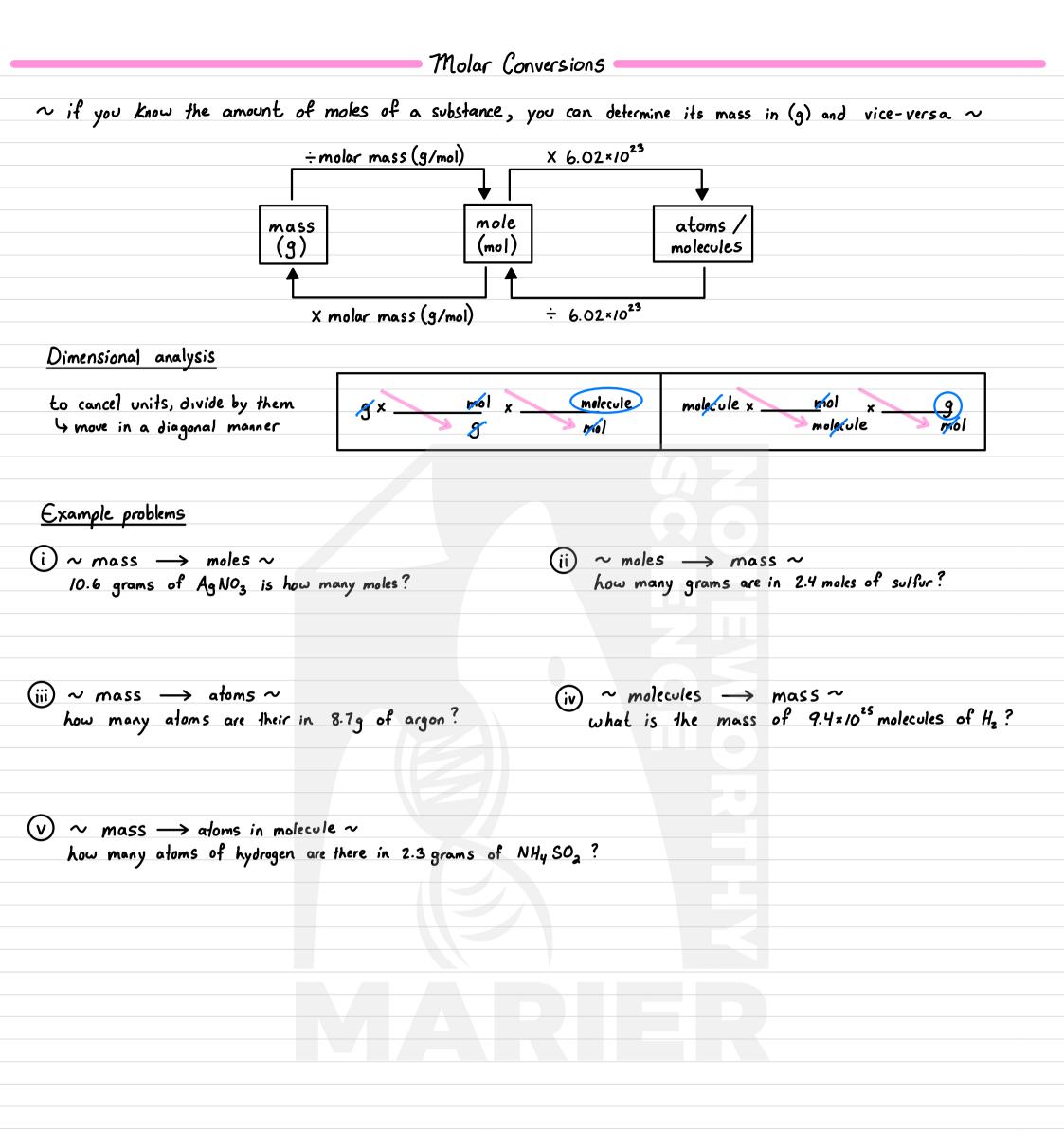

ex: carbon

p+	=
ē	=
n°	=
	=
shells	=
	:

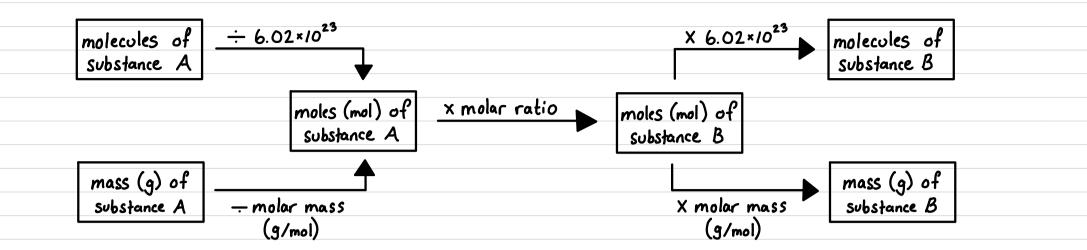
> can predict the chemical formula of ionic compound by determining ionic charge of each element and crossing them

cx:	potassium	+	nitrogen	CX: magnesium	t	chlorine	cx:	berylliv	m	t	Sulfur	
	•		Ū	0								
	→ as solids,	jo nic	compounds bo	nd as lattice		> freely dissolue	in water					
))		Æ	<u>()</u>		🗹 disassoc	iate
			🗹 brittle	: layers shift and break off			(F)		(III)			
								() () () () () () () () () () () () () (I conduct	electricity
) 🗹 insulate	r: no free charges, cannot flo	ω	()" (e) (e)			Or Her	(HS)(OS)	as free	ionS

	e e		leads to metallic properties:	
	· () · ()		, ,	
$\oplus^{*} \oplus^{*} \oplus^{*} \oplus^{*} \longrightarrow$	eloca 🎽 🕂 🕂 🕂 🗧	lized e	\rightarrow good electrical and thermal	conductor
\oplus \oplus \oplus \oplus \oplus	· · · · · · · · · · · · · · · · · · ·	ssociated with	e ⁻ e ⁻ _	
	any p	particular atom)	. .	delocalized é free to move
metals have a weak hold	the positive nuclei of		$\begin{array}{c} \bullet \\ \bullet $	and can transfer heat (energy)
On few valence electrons	metal atoms will be held		· (+) · (+) · (+) ·	and charge casily
: will release them	fogether by their attraction			U
	to the 'sea' of delocalized e		→ malleable	
	in a lattice			++++ loyers slide past
			$force \rightarrow \oplus $	+) ++ each other and
			$\begin{array}{c} \bullet \oplus $	+ remain bonded
			$(\underline{+},\underline{+},\underline{+},\underline{+},\underline{+},\underline{+},\underline{+},\underline{+},$	(+)


Balancing chemical equations =

	Dulu	incing chemical equations			
Law of conservation of	mass: matter cannot be	created or destroyed			
		mass of atoms reacting must be equal to those in products			
10					
reactants	product				
A + B ₂	$\rightarrow AB$	X not balanced			
	IAI				
	2 B 1	less "B" in product than reactant - matter has been destroyed			
1 / 1	. 112				
$2A + B_{a}$	$\rightarrow 2AB$	✓ balanced			
<i>•</i>	2 B / 2	- coefficient means ax molecule AB			
Steps to solving son	me equations				
(i) Single displacement ($A + BC \rightarrow AC + B$	(i) neutralization (base + acid \rightarrow HzO + salt)			
1- balance Ni + Ac	$g NO_3 \longrightarrow Ni(NO_3)_2 +$	+ Aq 1 - balance $C_{\alpha}(OH)_{2} + H_{3}PO_{4} \rightarrow H_{2}O + C_{\alpha}(PO_{4})_{2}$			
anion	J. J	cation $Ca(OH)_2 + H_2O + Ca_3(+Oq)_2$			
2-balance Ni + Ag	$g NO_3 \rightarrow Ni(NO_3)_2 +$				
cation		anion			
		3-balance $Ca(OH)_2 + H_3PO_4 \rightarrow H_2O + Ca_3(PO_4)_2$			
		hydrogen			
(iii) combustion $(C_{\gamma}H_{\gamma} +$	$+ O_2 \rightarrow H_2O + CO$	2			
		The Little			
I - balance C ₆ H ₁₄ + Carbon	$+ O_2 \rightarrow H_2O + CO$	2 Tips and Tricks			
Carpon		* if a polyatomic ion is present in both reactants and			
2 - balance C, H, +	$+ O_2 \rightarrow H_2O + CO$	2 products, freat as an atom and balance			
hydrogen		* save oxygen and hydrogen until the end			
		* double check all coefficients are in lowest terms			
	$+ O_2 \rightarrow H_2O + CO_2$	2 * double check each individual atom is balanced			
oxygen					
$4 - 2 \times C_L H_{14} +$	$+ O_2 \rightarrow H_2O + CC$	0 ₂			
(iv) really ugly/difficult equation - algebra!					
le accient underlage					
/· assign variables	$aS + bHNO_3 \rightarrow cH$	$H_2 SO_4 + O NO_2 + C H_2 O$			
2- setup equations	S a=c	3-let one variable = $1 b=1 \therefore d=1$			
	H b=2c+2e	and substitute Sa=c			
	N b=d	H = 2c + 2e			


$$O \quad 3b = 4c + 2d + e \qquad N \quad 1 = 1 \\ O \quad 3(1) = 4c + 2(1) + e \\ 1 = 4c + e \\ 2c = e \qquad 1 = 4c + e \\ 2c = e \qquad 5 - \text{ substitute variables as intiger coefficients} \\ 1 = 2c + 2(2c) \\ 1 = 6c \\ 1/6 = C \quad \therefore \quad 1/6 = a \qquad \frac{1}{6}S + 1HNO_3 \quad \rightarrow \frac{1}{6}H_2SO_4 + 1NO_2 + \frac{1}{3}H_2O \\ 1 = 2(1/6) + 2e \qquad 1S + 6HNO_3 \quad \rightarrow 1H_2SO_4 + 6NO_2 + 2H_2O \qquad x6 \\ 1 = 2(1/6) + 2e \qquad 1S + 6HNO_3 \quad \rightarrow 1H_2SO_4 + 6NO_2 + 2H_2O \qquad x6 \\ 1/3 = e \qquad 1/3 = e$$

Atomic, Molecular, and Molar Mass atomic mass (A,): mass of a single atom in undefined mass units (u) molecular mass (M,): mass of a single molecule in undefined mass units (u) <u>calculating Mr</u> $\underline{\in} x: (NH_{y})_{2} SO_{y}$ molar mass (M): mass of 1 mole (n) of a single molecule (g/mol) > 6.02 × 1023 A quantity, like "dozen" Unit: mol Average Atomic Mass and Isotopic Abundance Isotopes: two or more types of atoms that have the same atomic number but have different number of neutrons and ... mass < all same element, C, but different mass Carbon - 13 Carbon - 14 Carbon - 12 ex: Average atomic mass: the weighted average mass of the atoms in a naturally-occuring sample of the element <u>Example problems</u> (i) ~ determining average atomic mass from isotopic abundance ~ Calculate the average atomic mass of sulfur if 95.00% of all S atoms have a mass of 31.972 u, 0.76% has a mass of 32.971 and 4.22% have a mass of 33.967 u. (ii) \sim determine percent abundance from average atomic mass \sim Naturally - occuring europium (Eu) consists of two isotopes with a mass of 151 and 153.

If the average atomic mass of Europium is 151.97 u, what are the abundances?

Using a balanced chemical equation, we can convert between different reactants and products

Example problems

(i) ~ Converting mass of one substance to mass of another ~
Aluminum oxide is decomposed using electricity to produce Aluminum and oxygen gas, O2.
What mass of Al metal can be produced from 125g of aluminum oxide?

(ii) \sim converting mass of one substance to atoms of another \sim

Nitrogen gas, Nz and sodium are produced in an automobile air bag. It is generated by the decomposition of sodium azide, Na Nz. How many atoms of Na are produced when 80.0g of Nz are generated in this reaction?