Dilution: to make a solution less concentrated by adding more solvent
~ the number of molecules, or moles, of solute that is present remains the same before and after dilution ~

Example problems

(i) ~ calculating initial volume ~

For an experiment, you must make 2.0 L of $0.10 \mathrm{~mol} / \mathrm{L}$ sulfuric acid. The acid is usually sold as an $18 \mathrm{~mol} / \mathrm{L}$ concentrated solution. How much of the concentrated solution should be used to make a new solution?
(ii) ~ calculating final concentration ~

A solution is prepared by adding 600 mL of distilled water to 100 mL of $0.15 \mathrm{~mol} / \mathrm{L}$ ammonium nitrate. Calculate the molar concentration of the diluted solution.
iii) ~ calculating required volume for dilution ~ How much water would 1 need to add to 500 mL of a 2.4 M KCl solution to make a 1.0 M solution ?

Standard solution: solution containing precisely known concentration of a substance
uses : determine unknown concentrations of other substances via titration
as tested concentrations in scientific investigations

Preparing molar standard solutions (mol L-1) using solid solute:

Part A: Calculate amount of solute needed
1 - Determine desired concentration and volume ex: 500 mL of 0.5 M NaCl
2 - Calculate mass of solute needed using $n=C V \quad$ ex:

Part B: preparing solution

1- weigh __g of NaCl on a weighing boat using electronic scale ($\pm 0.01 \mathrm{~g}$) - fig. 1
2-add ~ 100 mL of distilled water to a 250 mL beaker
3-transfer __ of NaCl to beaker and stirrer with rod until dissolved. - fig. 2 Add more water if necessary

4 -transfer solution into_mmb volumetric flask ($\pm 0.5 \mathrm{~mL}$) using a funnel. Ensure all of solute is transferred by rinsing beaker with squirt bottle of water - fig. 3

5 - Add distilled water to flask until ~ lem below mark on neck. - fig. 4
6- Insert stopper and while holding it down with thumb, shake and invert flask multiple times
7- While looking at mark at eye level, carefully add water using squirt bottle until bottom of miniscus reaches mark - fig. 5

fig. 4

Preparing molar standard solutions (mol L^{-1}) by dilution:
Part A: Calculate amount of solute needed

1- Determine desired concentration and volume
ex: 100 mL of 0.1 M NaCl
2 - Determine concentration of initial standard solution
ex: $0.5 \mathrm{M} \mathrm{NaCl}(a q)$
3 - Calculate volume of solvent needed for dilution
ex: $V_{1}=$
Part B: preparing solution
1- measure__mL of 0.5 M NaCl solution using 50 mL graduated cylinder ($\pm 0.5 \mathrm{~mL}$)
2-transfer solution into __mL volumetric flask ($\pm 0.1 \mathrm{~mL}$) using a funnel - fig. 6
3-Add distilled water to flask until ~lem below mark on neck. - fig. 4
4 - Insert stopper and while holding it down with thumb, shake and invert flask multiple times

5-While looking at mark at eye level, carefully add water using squirt bottle until bottom of miniscus reaches mark - fig. 5

Preparing \% mass/volume solutions (\% m / v):

\longrightarrow these solutions are made using solid solute dissolved in liquid solvents

$$
\% \mathrm{~m} / v=\frac{\text { mass of solute }(\mathrm{g})}{\text { volume of solution }(\mathrm{mL})} \times 100
$$

ex: You want to prepare 50 mL of 20% sucrose solution How much solute and solvent do you need?

Preparing \% volume/volume solutions (\% v/v):

these solutions are made using liquid solute dissolved in liquid solvents

ex: You want to prepare 100 mL of $5 \% \mathrm{HCl}$ solution How much solute and solvent do you need?

Preparing \% mass / mass mixtures ($\% \mathrm{~m} / \mathrm{m}$):

these mixtures are often made using different solids

$$
\% \mathrm{~m} / \mathrm{m}=\frac{\text { mass of solute }(\mathrm{g})}{(\text { mass of solute }(\mathrm{g})+\text { mass of 'solvent }(\mathrm{g}))} \times 100
$$

ex: You want to prepare 150 g of $1 \% \mathrm{NaCl}$ in sand mixture
 How much NaCl and sand do you need?

