Ideal Gases

Matter exists in different phases depending on the amount of kinetic energy (temperature) particles have
Particle model of matter: describes how particles (can be individual atoms, molecules, compounds) move and interact in different phases

* these properties are toe for 'ideal' gases bot this is not tie for all gases

Avogadro's Law: under Standard Temperature and Pressure (STP) equal volumes of different gases contain equal number of particles.

Example problems

(i) ~ Calculate volume of gas ~

Calculate the volume occupied by 16.00 g of O_{2} at STP.
$n=16.00 \mathrm{~g} \times \frac{\mathrm{mol}}{32.00 \mathrm{~g}}=0.500 \mathrm{~mol}$

$$
\begin{aligned}
V=n \times V_{m} & =(0.500 \mathrm{~mol})\left(22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-11}\right) \\
& =11.35 \mathrm{dm}^{3}
\end{aligned}
$$

$V_{m}=22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
(ii) ~ Calculate mass of gas \sim

Calculate the amount of grams of $5.43 \times 10^{4} \mathrm{~mL}$ of CH_{y} at STP.
$V_{m}=22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$

$$
V=5.43 \times 10^{4} \mathrm{~mL} \times \frac{1 \mathrm{dm}^{3}}{1000 \mathrm{~mL}}=54.3 \mathrm{dm}^{3} \quad n=\frac{V}{V_{m}}=\frac{54.3 \mathrm{dm}^{3}}{22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}=2.392 \mathrm{~mol} \mathrm{CH} \times \frac{16.05 \mathrm{~g}}{\mathrm{~mol}}=38.4 \mathrm{~g}
$$

(iii) ~ Calculate number of atoms of gas \sim

A sample of Cl_{2} gas at STP occupies 17. IL. Calculate the mass of Cl_{2} and number of Cl atoms present in sample.

$$
\begin{aligned}
& =0.753 \mathrm{~mol} \times \frac{70.9 \mathrm{~g}}{\mathrm{mot}}=53.4 \mathrm{~g}
\end{aligned}
$$

Example problems

(i) ~Calculate volume of prodoct from known mass of limiting reactant \sim
3.54 g of magnesium is reacted with excess hydrochloric acid. Calculate volume of hydragen gas produced at STP.

1- write a chemical equation
2-balance the equation $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}(g)$
$3.54 \mathrm{~g} \quad \mathrm{Pdm}^{3}$
3-calculate mol of needed

4 -calculate vol of needed

$$
\begin{aligned}
& 3.54 \mathrm{~g} \mathrm{Mg} \times \frac{\mathrm{mol} \mathrm{Hg}_{\mathrm{g}}}{24.31 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Hg}_{\mathrm{g}}}=0.1456 \mathrm{~mol} \mathrm{H}_{2} \\
& V=n V_{\mathrm{m}}=(0.1456 \mathrm{~mol})\left(22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)=3.31 \mathrm{dm}^{3}
\end{aligned}
$$

(ii) ~ Calculate volume of prodoct from known volume of reactonts ~
$5 \mathrm{dm}^{3}$ of carbon monoxide and $2 \mathrm{dm}^{3}$ of oxygen gas react at STP.
what is the maximun volume of CO_{2} that con be produced? What volume of excess reactant that remains?
1- write a chemical equation

$$
\begin{aligned}
\mathrm{CO}+\mathrm{O}_{2} & \rightarrow \mathrm{CO}_{2} \\
2 \mathrm{CO}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{CO}_{2}
\end{aligned}
$$

2 -balance the equation

$$
\begin{aligned}
& 5 \mathrm{dm}^{3} \mathrm{CO} \times \frac{\mathrm{mol}}{22.7 \mathrm{dm}^{3}}=0.220 \mathrm{~mol} \quad 2 \mathrm{dm}^{3} \mathrm{O}_{2} \times \frac{\mathrm{mol}}{22.7 \mathrm{dm}^{3}}=0.0881 \mathrm{~mol} \\
& 0.220 \mathrm{~mol} \mathrm{CO} \div 2=0.11 \mathrm{~mol} \quad 0.0881 \mathrm{~mol} \div 1=0.0881 \mathrm{~mol} \therefore \text { limiting } \\
& 0.0881 \mathrm{~mol}_{\mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{22.7 \mathrm{dm}^{3}}{\mathrm{mot}}=4 \mathrm{dm}^{3} \\
& 0.0881 \mathrm{molO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{molO}} \times \frac{22.7 \mathrm{dm}_{2}}{\mathrm{mot}}=3.999 \mathrm{dm}^{3} \text { will react } \\
& 5 \mathrm{dm}^{3}-3.999 \mathrm{dm}^{3}=1 \mathrm{dm}^{3} \mathrm{CO} \text { remaining }
\end{aligned}
$$

3- calculate number of moles for each reactant

4 - divide moles of reactants by coefficient
and find difference
(iii) ~Calculate volume of reactiant from known mass of product ~

What volume in cm^{3} of oxygen gas is required in the complete combustion of $\mathrm{C}_{3} \mathrm{H}_{8}$ if 5.0 g of water is produced?
1- write a chemical equation

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
& 5.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mal} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g}} \times \frac{5 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.347 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

2-balance the equation
3 -calculate mol of needed

4 - calculate vol of needed

$$
V=n V_{m}=(0.347 \mathrm{moll})\left(22.7 \mathrm{dm}^{3} \mathrm{mot}^{-1}\right)=7.9 \mathrm{dm}^{3} \times \frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{dm}^{5}}=7900 \mathrm{~cm}^{3}
$$

