BS.3 CELL SPECIALIZATION

Guiding Questions

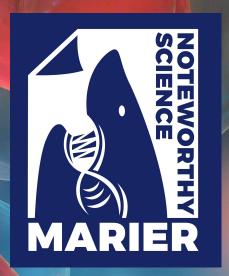
What are the roles of stem cells in multicellular organisms?

How are differentiated cells adapted to their specialized functions?

Linking Questions

What are the advantages of small size and large size in biological systems?

How do cells become differentiated?


B ______

Theme: Form and Function

Level of Organization: Cells

Written and drawn by:

PETER MARIER

SL LEARNING OUTCOMES

B2.3.1	Production of unspecialized cells following fertilization and their development into specialized cells by differentiation	Students should understand the impact of gradients on gene expression within an early-stage embryo.
B2.3.2	Properties of stem cells	Limit to the capacity of cells to divide endlessly and differentiate along different pathways.
B2.3.3	Location and function of stem cell niches in adult humans	Limit to two example locations and the understanding that the stem cell niche can maintain the cells or promote their proliferation and differentiation. Bone marrow and hair follicles are suitable examples.
B2.3.4	Differences between totipotent, pluripotent and multipotent stem cells	Students should appreciate that cells in early-stage animal embryos are totipotent but soon become pluripotent, whereas stem cells in adult tissue such as bone marrow are multipotent.
B2.3.5	Cell size as an aspect of specialization	Consider the range of cell size in humans including male and female gametes, red and white blood cells, neurons and striated muscle fibres.
B2.3.6	Surface area-to-volume ratios and constraints on cell size	Students should understand the mathematical ratio between volume and surface area and that exchange of materials across a cell surface depends on its area whereas the need for exchange depends on cell volume. NOS: Students should recognize that models are simplified versions of complex systems. In this case, surface-area-to-volume relationship can be modelled using cubes of different side lengths. Although the cubes have a simpler shape than real organisms, scale factors operate in the same way.

HL LEARNING OUTCOMES

B2.3.7	Adaptations to increase surface area-to-volume ratios of cells	Include flattening of cells, microvilli and invagination. Use erythrocytes and proximal convoluted tubule cells in the nephron as examples.
B2.3.8	Adaptations of type I and type II pneumocytes in alveoli	Limit to extreme thinness to reduce distances for diffusion in type I pneumocytes and the presence of many secretory vesicles (lamellar bodies) in the cytoplasm that discharge surfactant to the alveolar lumen in type II pneumocytes. Alveolar epithelium is an example of a tissue where more than one cell type is present, because different adaptations are required for the overall function of the tissue.
B2.3.9	Adaptations of cardiac muscle cells and striated muscle fibres	Include the presence of contractile myofibrils in both muscle types and hypotheses for these differences: branching (branched or unbranched), and length and numbers of nuclei. Also include a discussion of whether a striated muscle fibre is a cell.
B2.3.10	Adaptations of sperm and egg cells	Limit to gametes in humans.

B2.3.1—Production of unspecialized cells following fertilization and their development into specialized cells by differentiation. B2.3.2—Properties of stem cells. B2.3.3—Location and function of stem cell niches in adult humans. B2.3.4—Differences between totipotent, pluripotent and multipotent stem cells. B2.3.5—Cell size as an aspect of specialization Fertilization: fusion of nuclei from male and female haploid gametes (sperm and ovum), forming a zygote. This unspecialized cell divides many times forming an embryo and then differentiates into specialized cells as it grows Reproduction D3.1 fetus blastocyst ex: mesenchymal stem cell undifferentiated cell with the capacity to divide enclessly and differentiate into totipotent: capacity to differentiate into all pluripotent : capacity to differentiate into multipotent capacity to differentiate into specialized cells along different pathways. cell types (embryo and placenta) cells of specific tissue / type most cell types (embryo) Classified according to their potential to differentiate: toti > pluri > multi X remain in adults X found only in early embryos and not adults Stem cell niche: area of a fissue that provides a specific environment that can both maintain stem morphogens: signal molecules whose concentration alters gene expression and controls differentiation of stem cells in a developing embryo cells in an undifferentiated state and promote their proliferation and differentiation morphogens bind to cells and if a certain concentration threshold is reached, cause some genes to be expressed inducing specialization ex: bone marrow site of Hematopoietic stem cells (HSC), morphogen multipotent stem cells that can differentiate gradient into all blood cell lineages. Niche HSC has a large abundance of blood vessels Source ___ which allow for efficient delivery of YÎYÎÎ'YÎYÎ</u>Î ÎÎÎÎY ÎÎÎYY ÎÎÎYY ÎÎYYY YÎÎYY YÎYYY YYYYY organ A organ B organ C nutrients and transport of blood cells cells in to the body a tissue 11 [morphogen] ↑ [morphogen] ↓ [morphogen] ↓↓ [morphogen] ex: hair follicle bulge site of Hair follicle stem cells (HFSC), multipotent stem cells which proliferate 个 differentiation fate cell type B early-stage embryo development and differentiate into new hair follicles, cell type A cell type D cell type C governed by morphogens skin cells and more. Hair growth cycles between dormant and active phases In humans, specialized cells range tremendously in terms of size (length and volume) as on adaptive feature related to their function: motor neurons > Striated muscle fibres • 10pm (inactive) 30pm (active) • 7pm width, Ipm thick cell body 4 pm with long 110pm diameter - very large cell body 20 pm with very ● 20-100 pm diameter and 5µm head with 50µm long flagellum lengths can be > 300,000 pm protruding axons - 3000pm long axon - some > 1000 000 pm • Once activated, cells produce Small size reduces resistance. large cytoplasm allows ovum Small size allows passage very long axons allows signals long fibres allow contractions large amounts of antibodies small volume but long, thin axons and increases efficiency, allowing it to store a lot of nutrients and through narrow capillaries organelles needed for rapid and increases SA:V, increasing from increased rER and Golgi, allow them to be packed densely, to be sent great distances to occur over large distances to swim easier within narrow spaces in body at high speed MXIX growth following fertilization rate of Oz diffusion forming many connections in brain in a coordinated manner of female reproductive tract to egg causing its size to increase

B2.3.6—Surface area-to-volume ratios and constraints on cell size

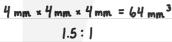
Cell surface area is the size of its outer surface, i.e. its membrane surface area s materials are exchanged using the membrane, the greater the area, the higher the rate of exchange

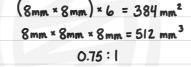
Cell volume is the size of its interior, i.e. mainly its cytoplasm metabolic reactions occur within cytoplasm, thus the larger the volume the greater the metabolic rate, i.e. its need for reactants and generation of products and waste

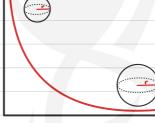
Cell size is constrained by its surface area (SA) to volume (V) ratio

Cell SA: $V = Cell surface area (\mu m^2)$ \longrightarrow limits rate of exchange with cell and its environment Cell volume (µm³) -> limits metabolic rate and need for exchange

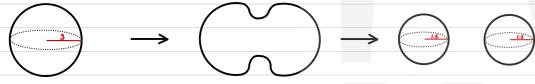
NOS: To better understand how SA: vol changes with increasing complex cellular shapes, cubes of increasing side lengths are used as a simplified model since scale factors operate the same regardless of shape





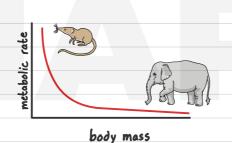

$$SA (l_{mm} \times l_{mm}) \times 6 = 6 mm^{2} (2 mm \times 2 mm) \times 6 = 24 mm^{2} (4 mm \times 4 mm) \times 6 = 96 m$$

$$V l_{mm} \times l_{mm} \times l_{mm} = 1 mm^{3} 2 mm \times 2 mm \times 2 mm \times 2 mm \times 4 mm \times 4$$



in size: its volume increases much faster than its surface area the SA: V decreases

reventually a cell will grow so large that its metabolic demand for exchange > exchange rate forcing it to divide in order to increase its SA: V ensuring the rate it imports nutrients and exports waste and heat meets cellular demands


SA: V = 1:1

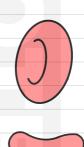
SA: V = 2:1

SA: V

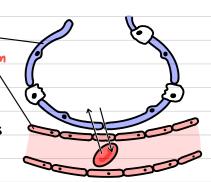
In multicellular organisms:

> larger animals have lower SA: V and more difficulty exchanging heat from their core to their surroundings. .: they have lower metabolic rate Smaller animals have higher SA: V and lose heat from their core to their surroundings too quickly : they have higher metabolic rate

B2.3.7—Adaptations to increase surface area-to-volume ratios of cells


Cells whose function involves exchange of materials have adaptations to maximize surface area: volume

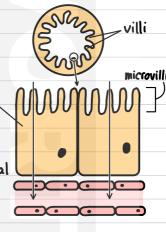
> Flattening


Some cells are very flattened (wide and thin), lowering their volume and increasing its surface area

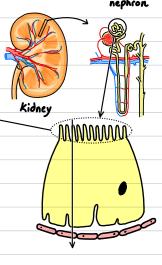
ex: Erythrocytes (Red blood cells) circulate in blood vessels, carrying and exchanging Oz with cells. Cell has a flattened biconcave shape, increasing SA: V which increases rate of diffusion and exchange

HL

ex: Type I pneumocytes and capillary endothelium cells allow the diffusion and exchange of Oz and COz between air in lungs and erythrocytes in blood



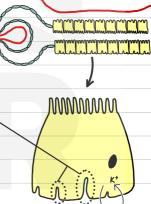
> Microvilli

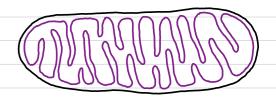


Cells in tissues involved in absorption greatly increase their SA through projections called microvilli

ex: lissue in the small intestine is folded in structures called villi which are composed of a single layer of intestinal epithelial cells which are themselves folded, massively increasing SA: V for nutrient absorption from intestinal lumen to blood in capillaries

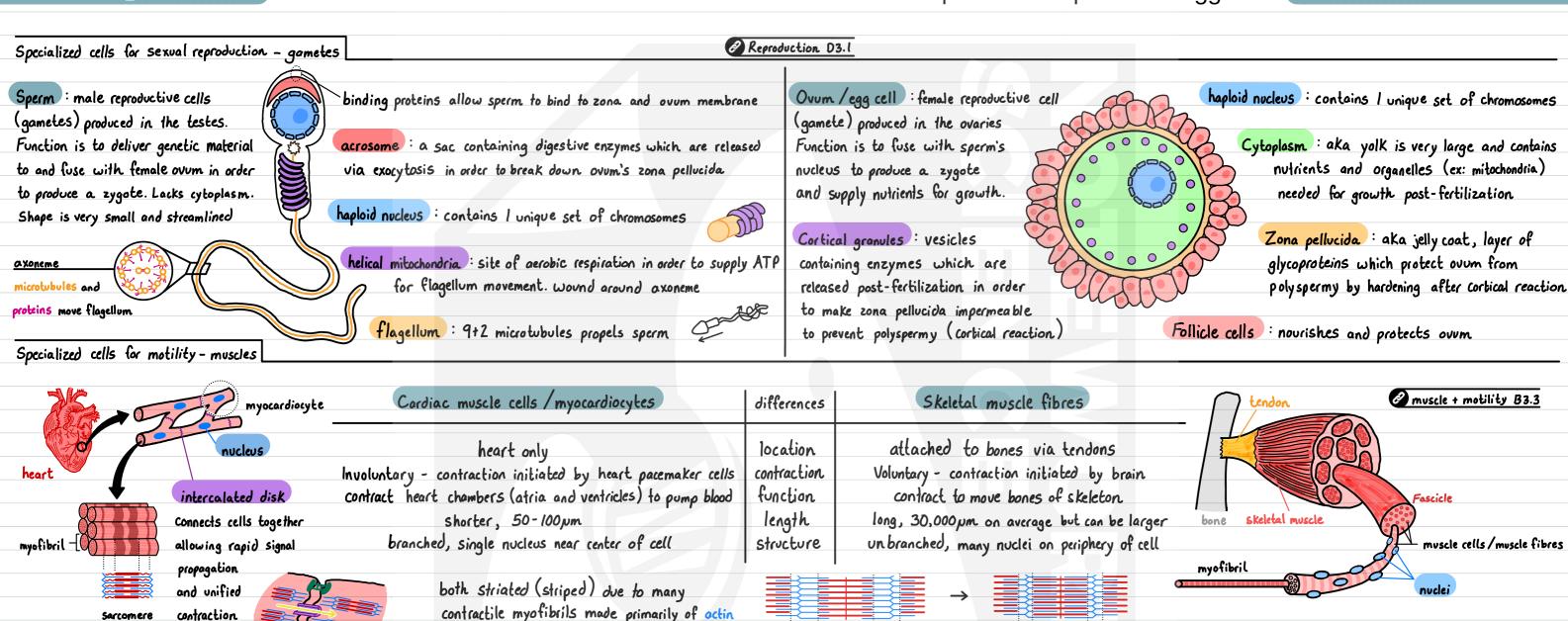
ex: tissue in kidneys called the proximal convoluted tubule are lined with cells with microvilli in order to increase the rate of reabsorption of sugars, salts, amino acids, and water from filtrate to the blood in capillaries


> Invagination

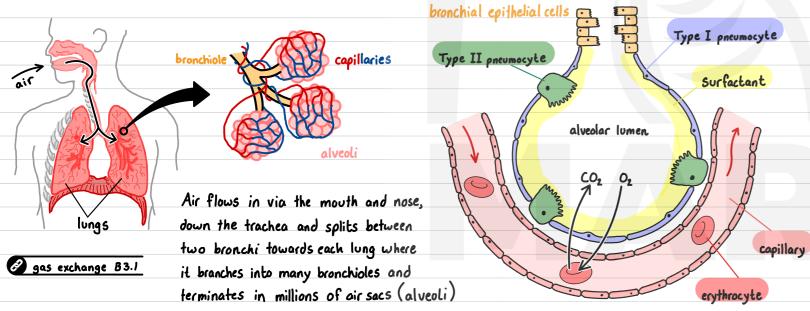


Cell membranes can fold inward, forming invaginations and increasing SA

ex: Cells in the Kidney proximal convoluted tubule (PCT) not only have microvilli to increase absorption but invaginations on the other (basal) end in order to increase the rate of active transport (Nat/Kt pump)



ex: the inner membrane of the mitochandrian has many invaginations called cristae in order to increase the surface area for the electron transport chain and oxidative phosphorylation


HL

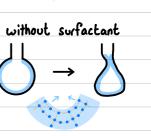
B2.3.8—Adaptations of type I and type II pneumocytes in alveoli. B2.3.9—Adaptations of cardiac muscle cells and striated muscle fibres. B2.3.10—Adaptations of sperm and egg cells

relaxed

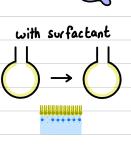
Specialized cells for ventilation and gas exchange - pneumocytes

and myosin - forming light and dark bands

Type I pneumocyte: alveolar cells adapted for gas exchange (COz and Oz) making up most of alveolar surface

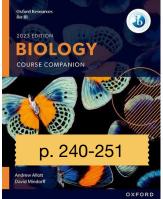

- very long (200 pm) and extremely thin (< 0.2 pm), reducing diffusion distance and increasing rate
- ecytoplasm volume is very small, to save space, the few organelles it has are clustered around nucleus

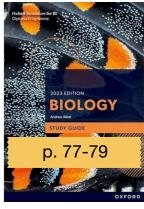
Type II pneumocyte · large, secretary alveolar cells which support alveolus

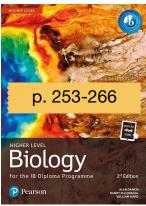

• can proliferate and differentiate into Type I pneumocytes for repair ontain many lamellar bodies, vesicles which secrete

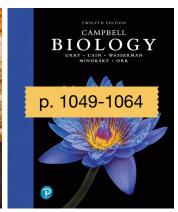
contracted

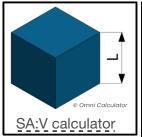
- pulmonary surfactant into alveolus via exocytosis > Keep lining moist allowing gases to dissolve and diffuse contains phospholipids which form monolayer which
 - reduces surface tension, preventing alveolar walls sticking together and collapsing during expiration

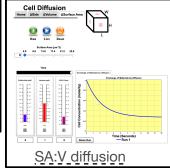

X as discussed in A2.2, debatable if striated muscle fibre is a "cell" due to enormous length and multinucleation

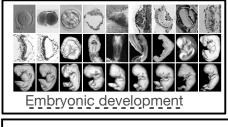



each resource is hyperlinked


Textbooks







Simulators / Interactives

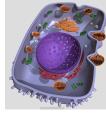
→ Articles

Hatton, I. A., Galbraith, E. D., Merleau, N. S. C., Miettinen, T. P., Smith, B. M., & Shander, J. A. (2023). The human cell count and size distribution. Proceedings of the National Academy of Sciences, 120(39). https://doi.org/10.1073/pnas.2303077120

Kicheva, A., & Briscoe, J. (2023). Control of tissue development by morphogens. Annual Review of Cell and Developmental Biology, 39(1), 91–121. https://doi.org/10.1146/annurev-cellbio-020823-011522

Li, L., & Xie, T. (2005). STEM CELL NICHE: Structure and function. Annual Review of Cell and Developmental Biology, 21(1), 605–631. https://doi.org/10.1146/annurev.cellbio.21.012704.131525

>3D models


Ovum

Myocardiocyte

Skeletal muscle

pneumocyte

Type 2

<u>Intestinal villi</u>