C2.2 Neural Signalling

Guiding Questions

How are electrical signals generated and moved within neurons?

How can neurons interact with other cells?

Linking Questions

In what ways are biological systems regulated?

How is the structure of specialized cells related to function?

2 C

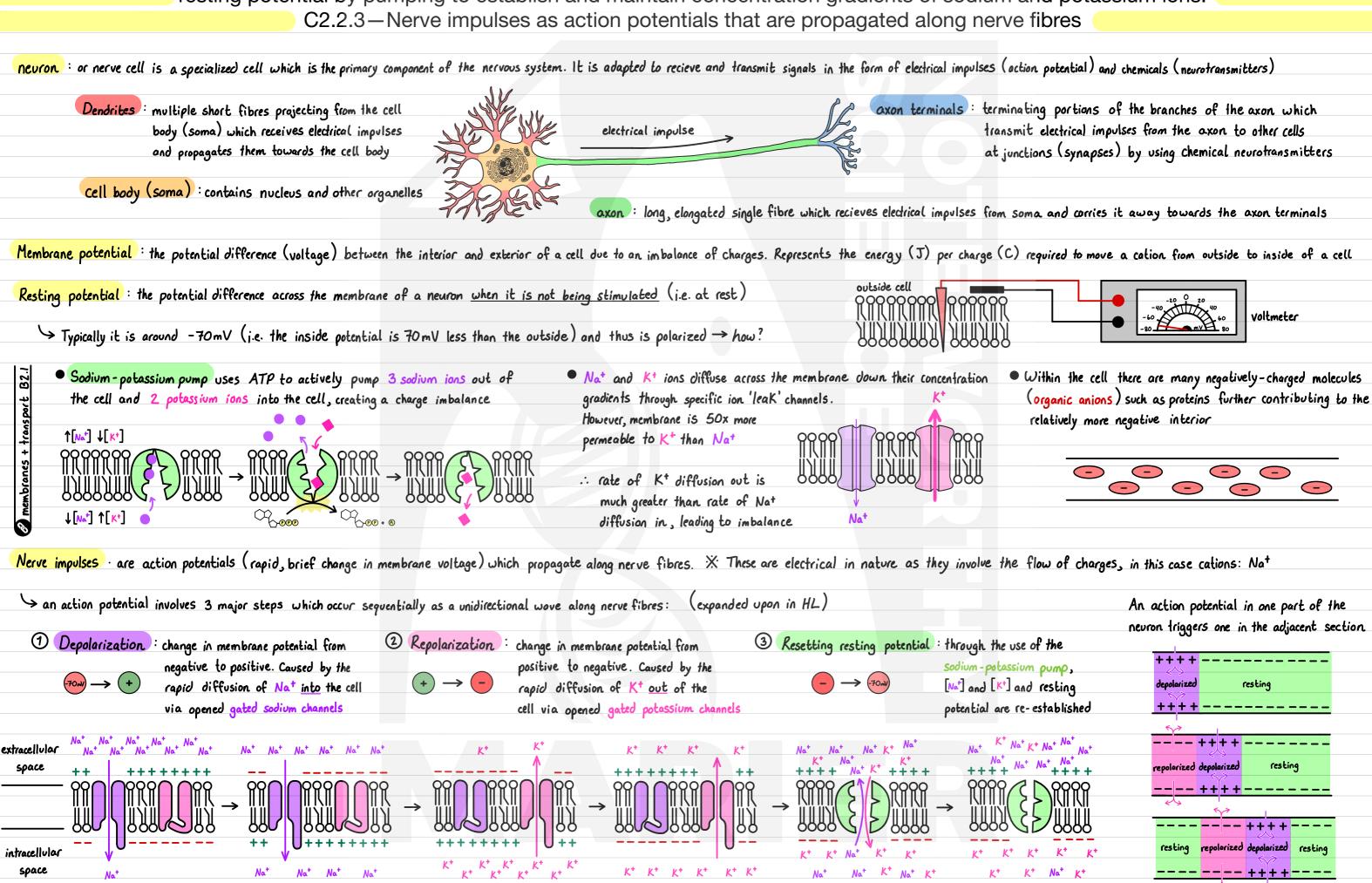
Theme: Interactions + Interdependence

Level of Organization: Cells

Written and drawn by:

PETER MARIER

https://qbi.uq.edu.au/blog/2017/07/stunning-neuroscience-images


SL Learning Outcomes

C2.2.1	Neurons as cells within the nervous system that carry electrical impulses	Students should understand that cytoplasm and a nucleus form the cell body of a neuron, with elongated nerve fibres of varying length projecting from it. An axon is a long single fibre. Dendrites are multiple shorter fibres. Electrical impulses are conducted along these fibres.
C2.2.2	Generation of the resting potential by pumping to establish and maintain concentration gradients of sodium and potassium ions	Students should understand how energy from ATP drives the pumping of sodium and potassium ions in opposite directions across the plasma membrane of neurons. They should understand the concept of a membrane polarization and a membrane potential and also reasons that the resting potential is negative.
C2.2.3	Nerve impulses as action potentials that are propagated along nerve fibres	Students should appreciate that a nerve impulse is electrical because it involves movement of positively charged ions.
C2.2.4	Variation in the speed of nerve impulses	Compare the speed of transmission in giant axons of squid and smaller non-myelinated nerve fibres. Also compare the speed in myelinated and non-myelinated fibres. Application of skills: Students should be able to describe negative and positive correlations and apply correlation coefficients as a mathematical tool to determine the strength of these correlations. Students should also be able to apply the coefficient of determination (R^2) to evaluate the degree to which variation in the independent variable explains the variation in the dependent variable. For example, conduction speed of nerve impulses is negatively correlated with animal size, but positively correlated with axon diameter.
C2.2.5	Synapses as junctions between neurons and between neurons and effector cells	Limit to chemical synapses, not electrical, and these can simply be referred to as synapses. Students should understand that a signal can only pass in one direction across a typical synapse.
C2.2.6	Release of neurotransmitters from a presynaptic membrane	Include uptake of calcium in response to depolarization of a presynaptic membrane and its action as a signalling chemical inside a neuron.
C2.2.7	Generation of an excitatory postsynaptic potential	Include diffusion of neurotransmitters across the synaptic cleft and binding to transmembrane receptors. Use acetylcholine as an example. Students should appreciate that this neurotransmitter exists in many types of synapse including neuromuscular junctions.

HL Learning Outcomes

C2.2.8	Depolarization and repolarization during action potentials	Include the action of voltage-gated sodium and potassium channels and the need for a threshold potential to be reached for sodium channels to open.
C2.2.9	Propagation of an action potential along a nerve fibre/axon as a result of local currents	Students should understand how diffusion of sodium ions both inside and outside an axon can cause the threshold potential to be reached.
C2.2.10	Oscilloscope traces showing resting potentials and action potentials	Application of skills: Students should interpret the oscilloscope trace in relation to cellular events. The number of impulses per second can be measured.
C2.2.11	Saltatory conduction in myelinated fibres to achieve faster impulses	Students should understand that ion pumps and channels are clustered at nodes of Ranvier and that an actio potential is propagated from node to node.
C2.2.12	Effects of exogenous chemicals on synaptic transmission	Use neonicotinoids as an example of a pesticide that blocks synaptic transmission, and cocaine as an example of a drug that blocks reuptake of the neurotransmitter.
C2.2.13	Inhibitory neurotransmitters and generation of inhibitory postsynaptic potentials	Students should know that the postsynaptic membrane becomes hyperpolarized.
C2.2.14	Summation of the effects of excitatory and inhibitory neurotransmitters in a postsynaptic neuron	Multiple presynaptic neurons interact with all-or-nothing consequences in terms of postsynaptic depolarization.
C2.2.15	Perception of pain by neurons with free nerve endings in the skin	Students should know that these nerve endings have channels for positively charged ions, which open in response to a stimulus such as high temperature, acid, or certain chemicals such as capsaicin in chilli peppers Entry of positively charged ions causes the threshold potential to be reached and nerve impulses then pass through the neurons to the brain, where pain is perceived.
C2.2.16	Consciousness as a property that emerges from the interaction of individual neurons in the brain	Emergent properties such as consciousness are another example of the consequences of interaction.

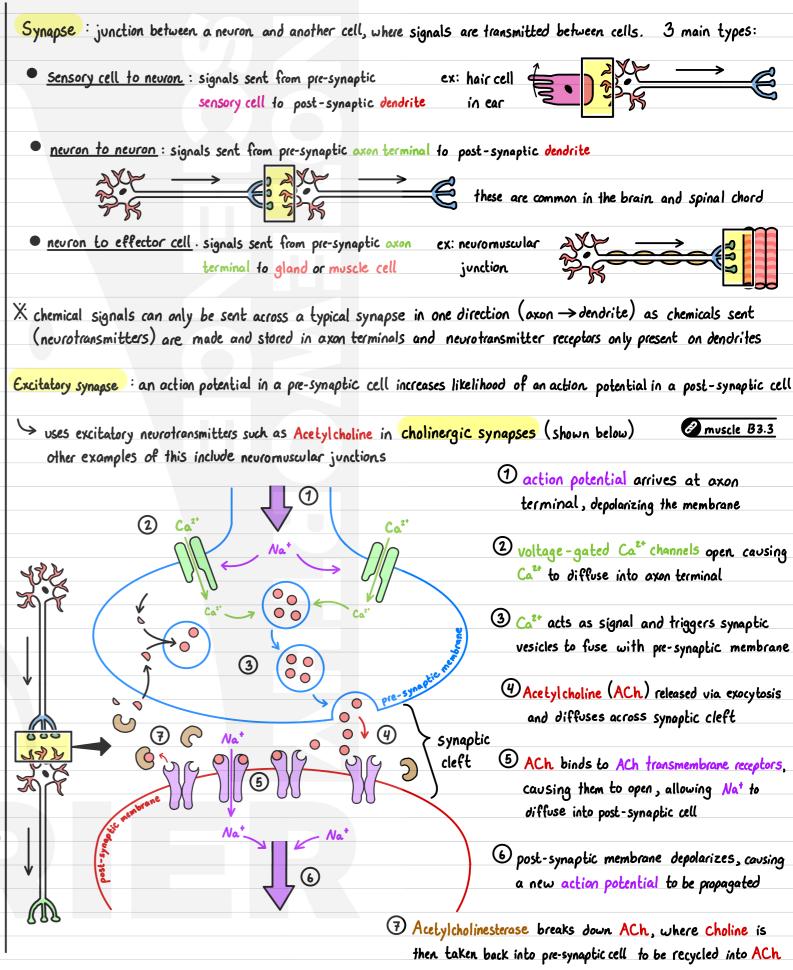
C2.2.1—Neurons as cells within the nervous system that carry electrical impulses. C2.2.2—Generation of the resting potential by pumping to establish and maintain concentration gradients of sodium and potassium ions. C2.2.3—Nerve impulses as action potentials that are propagated along nerve fibres

C2.2.4—Variation in the speed of nerve impulses. C2.2.5—Synapses as junctions between neurons and between neurons and effector cells. C2.2.6—Release of neurotransmitters from a presynaptic membrane.

C2.2.7—Generation of an excitatory postsynaptic potential

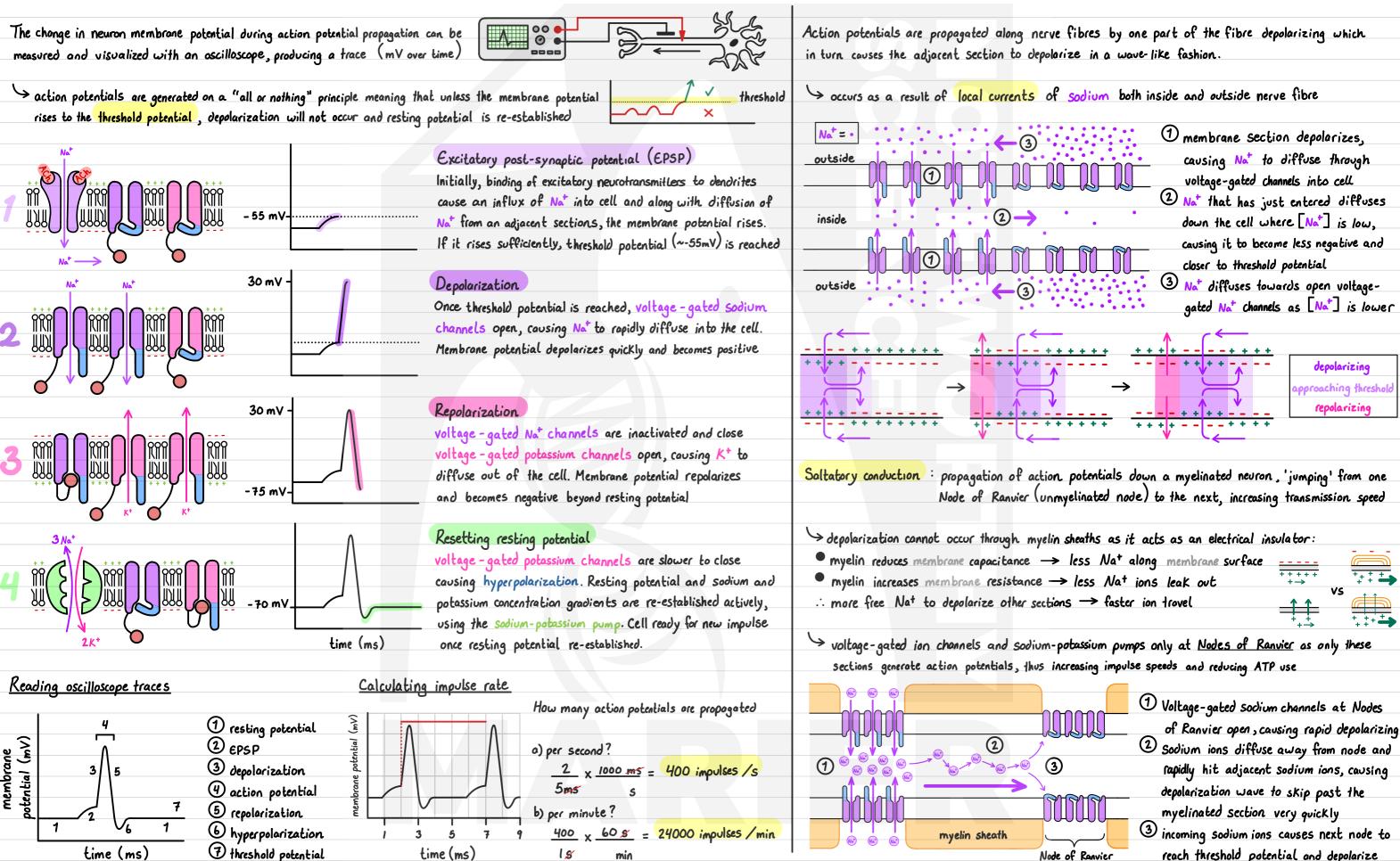
neural pathways with more

synapses, adding delay


body size (Kg)

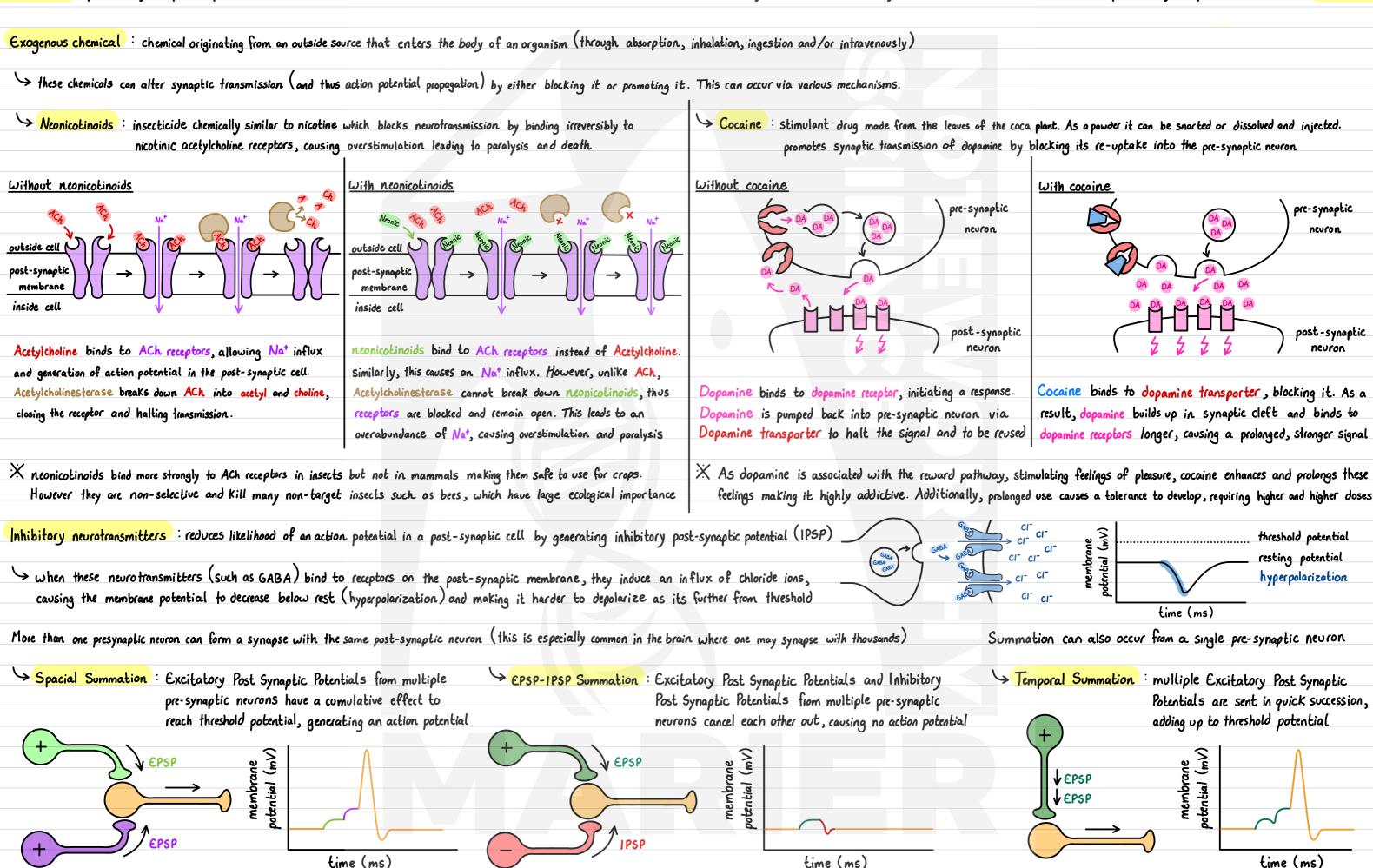
the velocity (ms-1) nerve impulses travel along axons can vary by 2 major factors: • axon cross-sectional diameter: the larger the axon diameter, the faster the transmission speed \rightarrow larger cross-sectional axon area (πa^2) the greater the number of paths for the charge to flow through the cytoplasm and thus the lower its membrane resistance : faster action potential (A.P.) propagation ex: squid have giant axons (diameters up to 1.5 mm compared to typical O.Smm) which controls part less space in cytoplasm of their water jet-propulsion system allowing : more internal resistance less internal resistance very fast reaction and escape response .: slower A.P. propagation .: faster A.P. propagation • myelination: presence of myelin on axons greatly increases the transmission speed in some axons (such as long motor neurons), Shwann cells surround the axon, forming a fatty myelin sheath myelin sheath acts as an electrical insulator, preventing flow of charges in/out of axon in myelinated axons only the gaps between the sheaths (Nodes of Ranvier) undergo depolarization and repolarization thus action potentials 'jump' from node to node, greatly increasing signal propagation -> expanded in HL Correlation: Statistical test for degree of association between two variables. Can be positive or negative correlation coefficient (r) expresses strength (>0.5 or <-0.5 = strong) and direction (+ or -) of a linear correlation. coefficient of determination (r^2) indicates what percentage of the variation in the dependent variable (y) is explained by the variation in the independent variable (x) i.e. how close each data point Fransport B3.2 fits a regression line. X correlation does not equal causation positive correlation between negative correlation between impulse conduction speed conduction speed and body and axon diameter. Size. larger organisms $c^2 = 0.55$ For myelinated axons, 86% of tend to have more complex r2=0.77

the variation in speed is predicted


by variation in axon diameter.

axon diameter (µm)

C2.2.8—Depolarization and repolarization during action potentials. C2.2.9—Propagation of an action potential along a nerve fibre/axon as a result of local currents. C2.2.10—Oscilloscope traces showing resting potentials and action potentials. C2.2.11—Saltatory conduction in myelinated fibres to achieve faster impulses


HL

reach threshold potential and depolarize

time (ms)

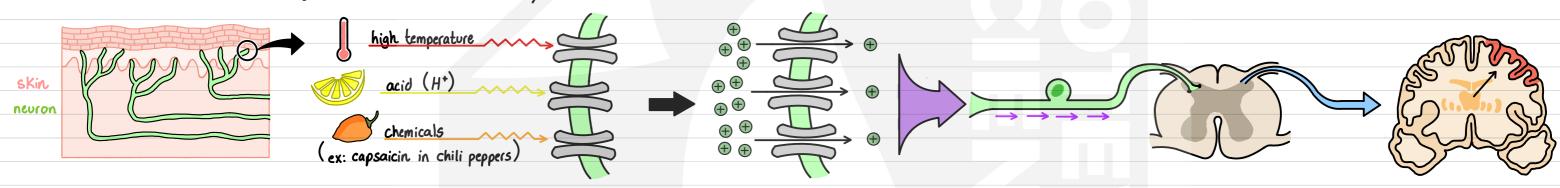
C2.2.12—Effects of exogenous chemicals on synaptic transmission. C2.2.13—Inhibitory neurotransmitters and generation of inhibitory postsynaptic potentials. C2.2.14—Summation of the effects of excitatory and inhibitory neurotransmitters in a postsynaptic neuron.

HL

C2.2.15—Perception of pain by neurons with free nerve endings in the skin.

C2.2.16—Consciousness as a property that emerges from the interaction of individual neurons in the brain

Pain is a feeling of distress often caused by an intense, damaging stimulus. Can be:


mechanical by

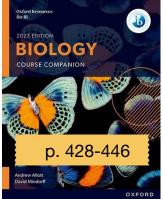
This sensation exists to motivate the organism to withdraw from the stimulus to prevent further damage and to avoid the same stimulus in the future to prevent future potential harm

integration of body systems C3.1

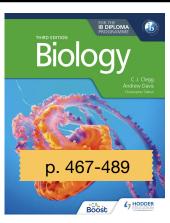
A painful stimulus is detected by sensory neurons called nocireceptors. Many of these neurons have free nerve endings which branch in the skin for sensation and which then send signals to central nervous system

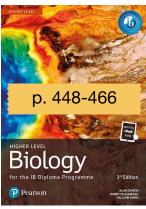
- O nocireptors have free nerve endings within the skin and detect stimuli
- 2 high temperature /acid /capsaicin activates Transient Receptor Potential (TRP) channel on nocireptor membrane
- 3 TRP channel open and allow cations to diffuse into the nocireceptor causing it to approach threshold potential
- 4) nocireptor depolarizes and an action potential is propagated along towards spinal cord
- 5 nocireptor synapses with another neuron which propagates impulse towards the brain
- 6 impulse reaches thalamus and then the somatosensory cortex where pain is processed

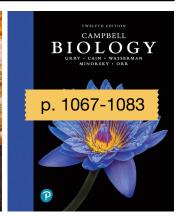
The brain is composed of over 100 billion (10") neurons which form over 100 trillion (10") synapses!

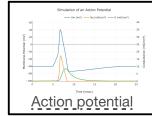

- with so many connections and interactions, features and properties begin to emerge which are not predicted by only studying neurons, i.e. emergent properties
- emergent properties: property which a system has but which individual members lack due to their interactions i.e. 'the whole is greater than the sum of its parts'

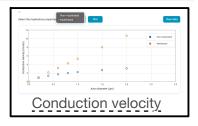
- Consciousness while difficult to properly define can be described as the state of being aware of and responsive to one's surroundings and of one's self
- consciousness is an emergent property of the many interactions in the brain as no single neuron has this, yet it exists in a human as an organism as a result of their interactions

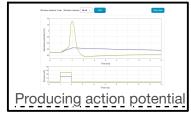



each resource is hyperlinked


> Textbooks



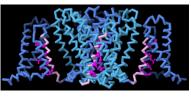



Simulators / Interactives

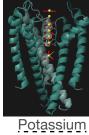
→ Articles

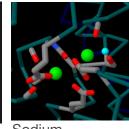
Hladik, M. L., Main, A. R., & Goulson, D. (2018). Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environmental Science & Technology, 52(6), 3329-3335. https://doi.org/10.1021/acs.est.7b06388

Tononi, G., & Koch, C. (2015). Consciousness: here, there and everywhere? Philosophical Transactions of the Royal Society B Biological Sciences, 370(1668), 20140167. https://doi.org/ 10.1098/rstb.2014.0167

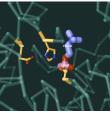

Zalc, B. (2006). The acquisition of Myelin: a success story. Novartis Foundation Symposium, 15-25. https://doi.org/ 10.1002/9780470032244.ch3

3D models

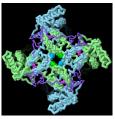

MetaNeuron


Neurons

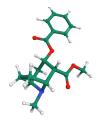

Voltage-gated Sodium channel


channel

Sodium-Potassium Pump



Acetylcholine Receptor



Acetylcholin

-esterase

TRPV channel

Cocaine