Membrane Transport
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Guiding Questions

How do molecules of lipid and protein assemble into biological membranes?

What determines whether a substance can pass through a biological membrane?
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Linking Questions
Theme: Form and Fonction |
What processes depend on active transport in biological systems? .
Level of Organizabion : Cells \

What are the roles of cell membranes in the interaction of a cell with its environment? ) . L AN
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SL Learning Content

Lipid bilayers as the basis of cell membranes

Lipid bilayers as barriers

Simple diffusion across membranes

Integral and peripheral proteins in membranes

Movement of water molecules across membranes by osmosis
and the role of aquaporins

Channel proteins for facilitated diffusion
Pump proteins for active transport
Selectivity in membrane permeability

Structure and function of glycoproteins and glycolipids

Fluid mosaic model of membrane structure

Phospholipids and other amphipathic lipids naturally form continuous sheet-like bilayers in water.
Students should understand that the hydrophobic hydrocarbon chains that form the core of a membrane
have low permeability to large molecules and hydrophilic particles, including ions and polar molecules, so

membranes function as effective barriers between aqueous solutions.
Use movement of oxygen and carbon dioxide molecules between phospholipids as an example of simple
diffusion across membranes.

Emphasize that membrane proteins have diverse structures, locations and functions. Integral proteins are
embedded in one or both of the lipid layers of a membrane. Peripheral proteins are attached to one or other
surface of the bilayer.

Include an explanation in terms of random movement of particles, impermeability of membranes to solutes
and differences in solute concentration.

Students should understand how the structure of channel proteins makes membranes selectively permeable
by allowing specific ions to diffuse through when channels are open but not when they are closed.
Students should appreciate that pumps use energy from adenosine triphosphate (ATP) to transfer specific
particles across membranes and therefore that they can move particles against a concentration gradient.
Facilitated diffusion and active transport allow selective permeability in membranes. Permeability by simple
diffusion is not selective and depends only on the size and hydrophilic or hydrophobic properties of particles.
Limit to carbohydrate structures linked to proteins or lipids in membranes, location of carbohydrates on the
extracellular side of membranes, and roles in cell adhesion and cell recognition.

Students should be able to draw a two-dimensional representation of the model and include peripheral and
integral proteins, glycoproteins, phospholipids and cholesterol. They should also be able to indicate
hydrophobic and hydrophilic regions.



B2.1.11

B2.1.12

B2.1.13
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B2.1.15

B2.1.16
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HL Learning Content

Relationships between fatty acid composition of lipid bilayers
and their fluidity

Cholesterol and membrane fluidity in animal cells

Membrane fluidity and the fusion and formation of vesicles
Gated ion channels in neurons

Sodium—potassium pumps as an example of exchange
transporters
Sodium-dependent glucose cotransporters as an example of
indirect active transport

Adhesion of cells to form tissues

Unsaturated fatty acids in lipid bilayers have lower melting points, so membranes are fluid and therefore
flexible at temperatures experienced by a cell. Saturated fatty acids have higher melting points and make
membranes stronger at higher temperatures. Students should be familiar with an example of adaptations in
membrane composition in relation to habitat.

Students should understand the position of cholesterol molecules in membranes and also that cholesterol
acts as a modulator (adjustor) of membrane fluidity, stabilizing membranes at higher temperatures and
preventing stiffening at lower temperatures.

Include the terms “endocytosis” and “exocytosis”, and examples of each process.

Include nicotinic acetylcholine receptors as an example of a neurotransmitter-gated ion channel and sodium
and potassium channels as examples of voltage-gated channels.

Include the importance of these pumps in generating membrane potentials.

Include the importance of these cotransporters in glucose absorption by cells in the small intestine and
glucose reabsorption by cells in the nephron.
Include the term “cell-adhesion molecules” (CAMs) and the understanding that different forms of CAM are
used for different types of cell-cell junction. Students are not required to have detailed knowledge of the
different CAMs or junctions.



B2.1.1—Lipid bilayers as the basis of cell membranes. B2.1.2—Lipid bilayers as barriers.
B2.1.4—Integral and peripheral proteins in membranes. B.2.1.9—Structure and function of
glycoproteins and glycolipids. B2.1.10—Fluid mosaic model of membrane structure

@ cellstructore A22

Cell membranes are an essenlial component of all cells : @ allows internal condilions to be different from sorroundings ® controls entcy and exit of substances ® allows sensitivity and communication

flvid mosaic model accepted view of dhe cell membrane structure pioposed by Singer and Nicolson (1972) : Oynamic , flesible structure made primarily of a phospholipid bilayer with. proteins and carbohydrates .
S fluid” : Components can move laterally  +  “mosaic” : non-vniform; made of many different components (h’pir), carbohydrate, and protein) in various configurations
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B2.1.3—Simple diffusion across membranes.

B2.1.5—Movement of water molecules across

membranes by osmosis and the role of aquaporins. B2.1.6—Channel proteins for facilitated diffusion.
B2.1.7—Pump proteins for active transport. B2.1.8 —Selectivity in membrane permeability

Man}c of the peacesses of life (Such as metabolism, homeostasis, nuitrition, cxcre’cion.) require transpor of malerials in and ovt of cells. This can occur both passively or actively
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® pacticles are constantly in rendom motion (due fo Kinetic mcrsy) and move independent of each other but as fhere are
more particleS in areas of high concenteation that can randomly mowe to areas of loww concentcation than the other
way arownd, a net movemeat from high to low concentration will accur passively.
® rate con be increased by increasing concencentration gradient and membrane surface area and decreasing distance needed to move
gas or liguid N
S Simple diffusion - passive net movement of particles from on area of high concenteation 1o low concentration in flvids

of high concentration do low concentration
without the vse of ATP
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® ATP is the cell’s ‘enecgy corrency' storing poteatial
energy from cellular respiration.. When hydrolyzed
it releases fhis energy fo power melabolic processes
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® Pump proteins fransmembeane. proteins which use chemical energy - ATP in acdec to ransport porticles
across membranes agains{: their concentration gradient ex: Sodium- potassivm pump

nevral signaling C2.2
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narrow pore which is

positively charged only

L

in Kidneys and plaat roots allowing water through

@2*" potentiali D25 v ‘ %% v [~ ]—wahr enteced cell
® membranes allow the passage of water but restrict fhe movement ZE:% = [
of Iarser or charged solotes, thus causing water fo move more ?., %:gz }, o : ’
® when water is interacting with and dissolving solotes its N %g ;
movement is festricted P water in a dilute solvtion is Y gd =3 ¥ :
more free and likely o move o a mare conceatrated Solution ¥ [solute ] %% 1 Csotote ] . .
o equilibium when overall solote concentration. is egual on both sides 16 moviment £ L moement  cell {5 more concentrated . takes in water (net)

ﬁa
to water and osmotic rate ﬂﬁﬂﬁ Rﬁ

® located in collecting ducts 0
ALY

for water absorption (exdud-'n3 H*)



B2.1.11—Relationships between fatty acid composition of lipid bilayers and their fluidity.

HL

B2.1.12—Cholesterol and membrane fluidity in animal cells. B2.1.13 —Membrane fluidity

and the fusion and formation of vesicles. B2.1.17 —Adhesion of cells to form tissues

Tc'mpcrabJre impacls membrane Fluidity j.e. the dcyee of Rﬂ RRR R more movement less movement
random movtment of the components, namely phospholipids ﬂ greatec fluidity ﬂ lower fluidity
V\{ g g g g mm lower F«meab;li{y

which can move laterally, rotate and even swifh positions greater permeability

ospholipid fatty acid composition on membrane flvidit
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the forther awoay tissves are fiom ihe body core , the more unsaturated fatty acids ( hooves > vgpet leg > bady)

Impact of cholesterol on membcane Flvidity
ﬁﬁ% WT( X cholesterol is present in animal but not plant membranes
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membrane as its amphipathic -

OH "head' is polar, body is non-polar
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Endocytosis * the formation of a vesicle fiom he invagination and pinching off of a piece
of the plasma_membrane - bringing ex:l:facel|05ar Ea:tenl'
Process requires ATP flvids (pinocy{-.osis) Solids (phadocy'l:osl's)
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Exocytosis the fusion of vesicle a with the plasmo. membrane - discharging vesicle contents
into the extracellvlar space (i-e. outside the cell). Process requires  ATP
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cells €0rmin3 Junctions - providing Slucture and Eissve formation

\S sea| cells together, ¢reating a barrier
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\> connect cells to extracellvlar malrix, Prow'du'n3 onchorage
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B2.1.14—Gated ion channels in neurons. B2.1.15—Sodium—potassium pumps as an example of exchange
transporters. B2.1.16 —Sodium-dependent glucose cotransporters as an example of indirect active transport

Channel proteins allow for facilitated diﬂ’usion,’rranspodin_q specific materials thal ofherwise weuld only diffuse
Slowly or not ot all across & phospholipid bilayer (such as jons). while they do not coniral direction of flow
(alwoys a net flow high to low concentration ) they can be opened or closed reversibly to control transport

ion channel ° Transmembrane protein channels which allow the diffusion of o specific ion

‘Gated " as they open oc close in response to binding of o neurotransmitter

X nevrotrensmitters are signalling molecules which ore Secreled by a newron. ot synapses fo couse on effect
ex: Ace(:yld\oh'ne, Glutamate , GABA, Dopamine, Serotonin, Epinephrine

\> Nicotinic acetylcholine receptors : gated ion chennel allowing oiffusion of sadiom (No*) into the cell
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Voll:agc- goted jon channel  * Transmembrane protein channels which allow the diffusion of a specific ion
‘Gated' as they open or close in response to a specific membrane potential (voll'aac)

X polcntial diffecence or vol{aae is the amount of electric potential energy between two points <V or JC")
membyane _potential is the difference in electric potential (V) bekween the inside and oviside of Jhe cell

\> inside of the cell v -FOmV compared fo the outside —> generoted by the sadium - potassiom pump
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X as the pump undergoes unequal exchange of cations (lose 3, take in 2)
it maintains o relative negative membrane potential (-7omV)
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enhanee 'fransPofl;efs - Transmembrane protein which {'ransporis different svbstances in opposite directions across
ihe membrane asains'L their respective 3rad.'e/«€s, thos ‘exchanging' them

: exchanac franspocter moving 3 Na* and 2K' agoinst their respective
concentration gradients atross the membrane vsing ATP

Pump binds 3 Ne* from cyboplasm
of cell with, high aoffinity

ATP s hydrolyzed to ADP, binding
phosphate to (phosp\wrylnli@) pump
Phosphorylation causes a change in pump
conformation reducing its aflinity foc
Nat) releasing Mot gutside cell

New pump shape binds 2 K7 from
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Binding K' teiggers release of phosphate,
CWSin‘g pump bo revert bo o:ia.‘na(
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[ndirect active transport :uses the energy produced by the movement of one substance down its concentration gradient
to transport another against its concentration gradient . Direct ATP use not reguired

> Sodium- glucose cotanspocter: - Cotranspoctec protein which fransports glucose against iks concentration gradient
into the cell using the energy {rom simoltancously fraasparting Not down its gradiest

into the cell
when there is an increase in membrane potentiol (-70mV to -55mV)
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