Percentage yield

amount of product actually produced in a chemical reaction (mol or g)
\longrightarrow this is often less than theoretical due to inefficiencies in recovering products or side reactions which reduce product \longrightarrow calculated by determining mass or volume of product
ratio of actual and
theoretical yields.
larger values $=$ more efficient

$$
\text { Percentage Yield }(\%)=\frac{\text { experimental yield }}{\text { theoretical yield }} \times 100 \%
$$

amount of product produced in a chemical reaction assuming the limiting reactant is completely used up. (mol or g) \rightarrow calculated stoichiometrically using the limiting reactant

Example problems

(i) 36 g of tin (IV) phosphate, $\mathrm{S}_{\mathrm{n}_{3}}\left(\mathrm{PO}_{4}\right)_{4}$, reacts with 36 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to make tin (iv) carbonate and sodium phosphate. If 29.8 g of $\operatorname{tin}(I V)$ carbonate are actually formed, what is the percent yield?
(ii) 15 g of sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, reacts with excess iron (III) phosphate, $\mathrm{Fe}^{\mathrm{PO}} 4$, producing a 65.0% yield. How many grams of sodium phosphate will actually be made?
(iii) What mass of silver could be formed if a large zinc wire is placed in a beaker containing 145.0 mL of $0.095 \mathrm{moldm} \mathrm{m}^{-3}$ silver nitrate, AgNO_{3}, and allowed to react overnight? Reaction has 97% yield.

Percentage Purity

Some samples of compounds are composed of a mixture of different substances.

> mass of the compound of interest (g)

Percentage of a
sample which is a specific product

$$
\text { Percentage Purity }(\%)=\frac{\text { mass of pure compound in sample }}{\text { total mass of sample }} \times 100 \%
$$

mass of the mixture in total (g)

Example problems

(i) A 12.00 g sample of a crystallised pharmeceutical product was found to contain 11.57 g of the active drug. Calculate the percentage purity of the sample of the drug.
(ii) 15.0 g of 92.5% magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, is reacted with excess $\mathrm{H}_{3} \mathrm{PO}_{4}$ to produce water and magnesium phosphate. Calculate the mass of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that will be formed (assuming a 100% yield).
(iii) Automotive air bags inflate when solid sodium azide, NaN_{3}, decomposes explosively into sodium and nitrogen gas. what volume of nitrogen gas is formed if 120 g of 85% pure sodium azide decomposes. Assume STP conditions.

