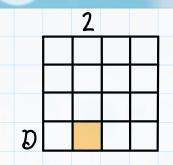
D2.3 Water Potential

Guiding Questions

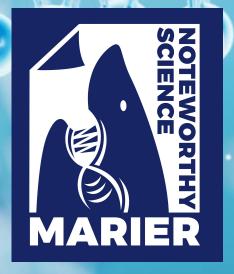

What factors affect the movement of water into or out of cells?

How do plant and animal cells differ in their regulation of water movement?

Linking Questions

What variables influence the direction of movement of materials in tissues?

What are the implications of solubility differences between chemical substances for living organisms?



Theme: Continuity + Change

Level of Organization: Cells

Written and drawn by:

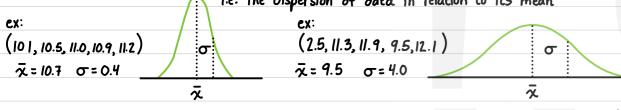
PETER MARIER

SL Learning Outcomes

D2.3.1	Solvation with water as the solvent	Include hydrogen bond formation between solute and water molecules, and attractions between both positively and negatively charged ions and polar water molecules.
D2.3.2	Water movement from less concentrated to more concentrated solutions	Students should express the direction of movement in terms of solute concentration, not water concentration. Students should use the terms "hypertonic", "hypotonic" and "isotonic" to compare concentration of solutions.
D2.3.3	Water movement by osmosis into or out of cells	Students should be able to predict the direction of net movement of water if the environment of a cell is hypotonic or hypertonic. They should understand that in an isotonic environment there is dynamic equilibrium rather than no movement of water.
D2.3.4	Changes due to water movement in plant tissue bathed in hypotonic and those bathed in hypertonic solutions	Application of skills: Students should be able to measure changes in tissue length and mass, and analyse data to deduce isotonic solute concentration. Students should also be able to use standard deviation and standard error to help in the analysis of data. Students are not required to memorize formulae for calculating these statistics. Standard deviation and standard error could be determined for the results of this experiment if there are repeats for each concentration. This would allow the reliability of length and mass measurements to be compared. Standard error could be shown graphically as error bars.
D2.3.5	Effects of water movement on cells that lack a cell wall	Include swelling and bursting in a hypotonic medium, and shrinkage and crenation in a hypertonic medium. Also include the need for removal of water by contractile vacuoles in freshwater unicellular organisms and the need to maintain isotonic tissue fluid in multicellular organisms to prevent harmful changes.
D2.3.6	Effects of water movement on cells with a cell wall	Include the development of turgor pressure in a hypotonic medium and plasmolysis in a hypertonic medium.
D2.3.7	Medical applications of isotonic solutions	Include intravenous fluids given as part of medical treatment and bathing of organs ready for transplantation as examples.

HL Learning Outcomes

D2.3.8	Water potential as the potential energy of water per unit volume	Students should understand that it is impossible to measure the absolute quantity of the potential energy of water, so values relative to pure water at atmospheric pressure and 20°C are used. The units are usually kilopascals (kPa).
D2.3.9	Movement of water from higher to lower water potential	Students should appreciate the reasons for this movement in terms of potential energy.
D2.3.10	Contributions of solute potential and pressure potential to the water potential of cells with walls	Use the equation $\psi_w = \psi_s + \psi_p$. Students should appreciate that solute potentials can range from zero downwards and that pressure potentials are generally positive inside cells, although negative pressure potentials occur in xylem vessels where sap is being transported under tension.
D2.3.11	Water potential and water movements in plant tissue	Students should be able to explain in terms of solute and pressure potentials the changes that occur when plant tissue is bathed in either a hypotonic or hypertonic solution.


D2.3.1—Solvation with water as the solvent. D2.3.2—Water movement from less concentrated to more concentrated solutions. D2.3.3—Water movement by osmosis into or out of cells. D2.3.5—Effects of water movement on cells that lack a cell wall Dissolve: process of solute passing into solution. Occurs when attractive forces between solvent and solute > attractive forces holding solute together solute - substance being dissolved in solution Solvation: interaction of a solvent with dissolved molecules or ions (solutes) - homogeneous mixture composed Water Al.1 aqueous solution is one where water is the solvent. This occurs of two or more substances when water is attracted and interacts with polar or charged solutes δ+ 30 δex: ionic compounds such as sodium chloride (NaCI) dissolve in water by dissociating ex: polar compounds, such as alcohols or ex: non-polar molecules such as lipids into ions and being attracted to the partially charged poles of water molecules glucose dissolve in water by the do not dissolve in water as they are via ion-dipole forces. Water molecules form 3-D hydration shells, isolating the ions partially charged OH groups being attracted uncharged and thus have no attraction to the poles of water molecules via and do not interact with water (Na) (CI-) (Na) (CI-) dipole-dipole forces and hydrogen bonding glucose-glucose attraction < attractive forces between glucose and water electrostatic force of attraction < ion-dipole interaction with water Aqueous solutions involve the continual movement of both water and the solutes. In liquids, molecules are constantly breaking and forming intermolecular bonds. 1 solute [] In solutions, attractive forces between solvent and solute > attractive forces between solute molecules : the more concentrated the solution (more solute/solvent), the more the movement of water is restricted and reduced (viscous) The relative concentration of solutions can be compared and used to predict net water movement across membranes (from one solution to another) * water movement into and out of cells occurs primarily via aquaporins isotonic: a solution of equal osmolarity (solute concentration) to another In cells which lack a cell wall (ex: animals and protists), the influx or outflux of water can lead to cellular damage : regulating cytosol asmolarity is a crucial constant homeostatic process (osmoregulation) hypertonic: a solution of higher osmolarity (solute concentration) to another cell structure A2.2 cell in hypotonic solution will swell and potentially Ex: Paramecium reside in freshwater hypotonic · a solution of lower osmolarity (solute concentration) to another burst (cytolysis) due to net influx of water. environments, thus water is constantly entering : to prevent cytolysis, they Isotonic I Isotonic if two solutions are isotonic, the rate of use contractile vacuoles to actively movement between them is equal (dynamic remove water as a form of osmoregulation equilibrium) : no net water movement > cell placed in hypertonic solution will shrink and > cell placed in an isotonic solution will remain crenate, due to net outflux of water. more free water movement in a hypotonic at a ~ constant size due to zero net water movement - which is ideal for cell function solution, relative to a hypertonic solution : net movement of water from hypotonic * multicellular organisms regulate the extracellular to a hypertonic solution (low to high fluid osmolarity, keeping it isotonic to cells homeostasis D3.3 solute concentration) via osmosis ex: Kidneys regulate blood plasma osmolarity hypertonic | hypotonic

In cells that have a cell wall (ex: plants, fungi, bacteria) the influx of water in hypotonic solutions results in the cell swelling but not bursting - resulting in turgor pressure: force pushing plasma membrane against cell wall > cell in hypotonic medium will swell and become turgid Ex: in multicellular plants, Ex: in multicellular plants, cell in hypertonic medium cytoplasm volume draps, causing as cell wall is able to resist internal hydrostatic pressure turgid cells provide support plasma membrane to pull away from cell wall - plasmolysis flaccid cells have very due to its strength under low hydrostatic pressure, compression - allowing the reducing support and causes plant to be upright plant to wilt. Plosmolyzed without an endoskeleton cells typically die. The osmolarity (solute particles per solution volume) of plant tissues can be deduced by bathing tissues in varying concentrated (hypertonic and hypotonic) solutions by determining the isotonic solute concentration > Part A - preparing plant tissues > Part B - preparing solutions 3 Using a scale, Using cork borer, extract 2) using ruler and ex: creating 100 mL of 0.5 moldm-3 solution of NaCI Create a range of solute n = CV = (0.5 molder 3) (0.1 dm 3) cylindrical samples of scalpel cut all solutions (Nacl or sucrose) determine the = 0.05 mot x 58.44 g mot chosen plant tissue tubes to the mass of each from O moldm. 3 and up (potato, carrot, Squash) plant cylinder (hypotonic to hypertonic) = 2.92 q of Nacl + 100 mL of water same length > Part D - determining change in length and mass > Part C - submerging tissues into solutions 1 remove each cylinder 1) submerge 5+ cylinders into each solution

• mean (x) for each experimental group is calculated and graphed

• standard deviation (σ): amount of variation of values of a variable about its mean i.e. the dispersion of data in relation to its mean

data more clustered around mean = 10

or place I cylinder in a test tube x5

data more spread out around mean = 10

• standard error (OM): how reliably the mean of a sample represents mean of whole population the larger the sample size (n), the smaller the standard error

* typically used if trial sample size >30

• error bars represent ± 1 om or o

and blot excess

fluid using tissue

> Part F - analysis

• degree of overlap can be analyzed:

overlap suggests there is no difference between both means

no overlap suggests there is a difference between both means

X a statistical test needs to be done to confirm this (ex: ANOVA, t-test)

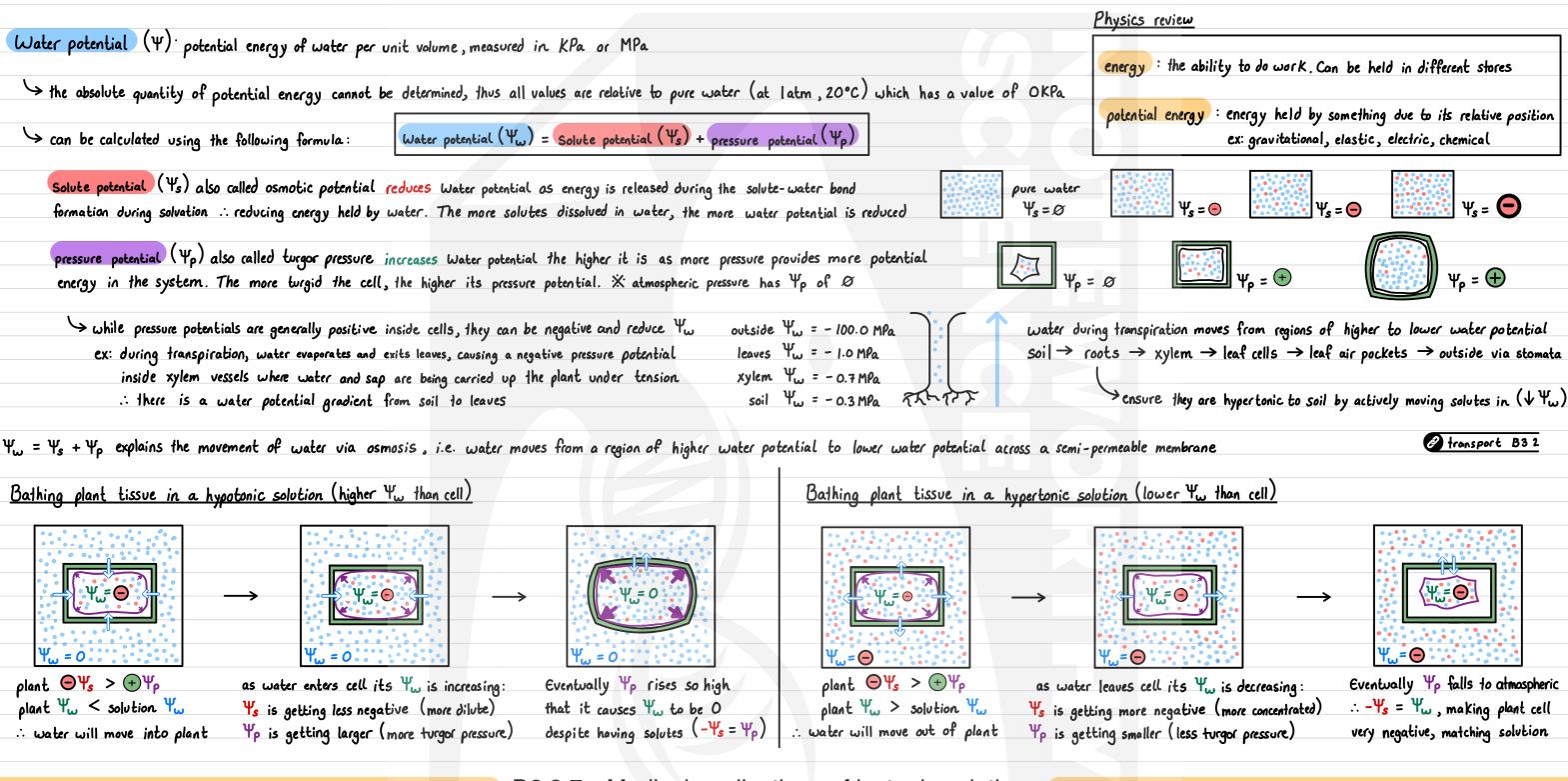
2) Using scale and ruler, measure the mass and length of each cylinder

length

mean

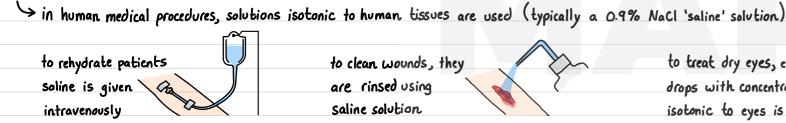
3 Calculate the % change in length and mass

% change = final - initial x100 initial


X takes individual variances into account

Positive change in mass LOBF displays trend and allows prediction or length indicates water 5 entered plant tissue 2. solution is hypotonic relative to plant န္မာ -5 Negative change in mass isotonic point or length indicates water <u>left</u> plant tissue -15 solution is hypertonic relative to plant Nacl or sucrose concentration (moldm-3)

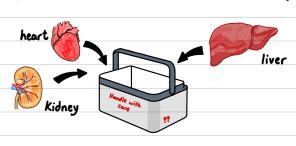
- point x is the predicted concentration where the plant tissue did not gain or lose mass or length, i.e. the solution is isotonic and there is no net water movement due to osmosis : this is the predicted osmolarity of the plant tissue
- experiment can be repeated at and around concentration « in order to confirm prediction


HL

D2.3.8—Water potential as the potential energy of water per unit volume. D2.3.9—Movement of water from higher to lower water potential. D2.3.10—Contributions of solute potential and pressure potential to the water potential of cells with walls. D2.3.11—Water potential and water movements in plant tissue

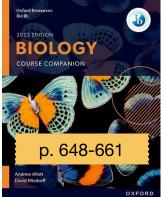

D2.3.7—Medical applications of isotonic solutions

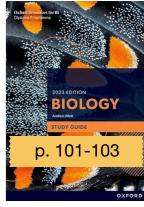
In isotonic solutions there is no net movement of water in/out of human cells, allowing their shape to remain ~ constant and optimizing their function. In hypotonic solutions they may lyse and in hypertonic solutions may crenate

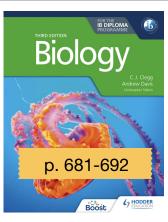


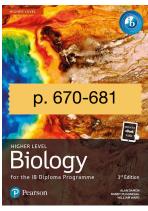
to clean wounds, they are rinsed using saline solution

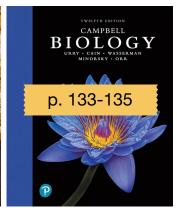
to treat dry eyes, eye drops with concentration isotonic to eyes is used

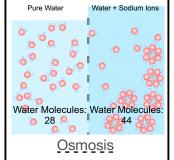


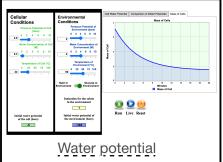

When moving organs for transplant, they are bathed in cool, isotonic solutions for preservation and cell integrity

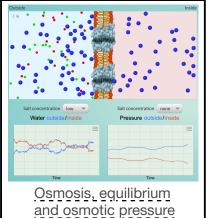





>Textbooks







Simulators / Interactives

Choong, K. (2006). Hypotonic versus isotonic saline in hospitalised children: a systematic review. Archives of Disease in Childhood, 91(10), 828–835. https://doi.org/10.1136/adc.2005.088690

Novick, K. A., Ficklin, D. L., Baldocchi, D., Davis, K. J., Ghezzehei, T. A., Konings, A. G., MacBean, N., Raoult, N., Scott, R. L., Shi, Y., Sulman, B. N., & Wood, J. D. (2022). Confronting the water potential information gap. Nature Geoscience, 15(3), 158–164. https://doi.org/10.1038/s41561-022-00909-2