D1.2 Protein Synthesis

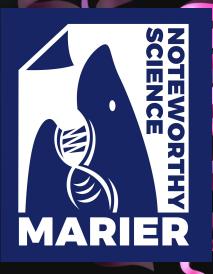
Guiding Questions

How does a cell produce a sequence of amino acids from a sequence of DNA bases?

How is the reliability of protein synthesis ensured?

Linking Questions

How does the diversity of proteins produced contribute to the functioning of a cell?

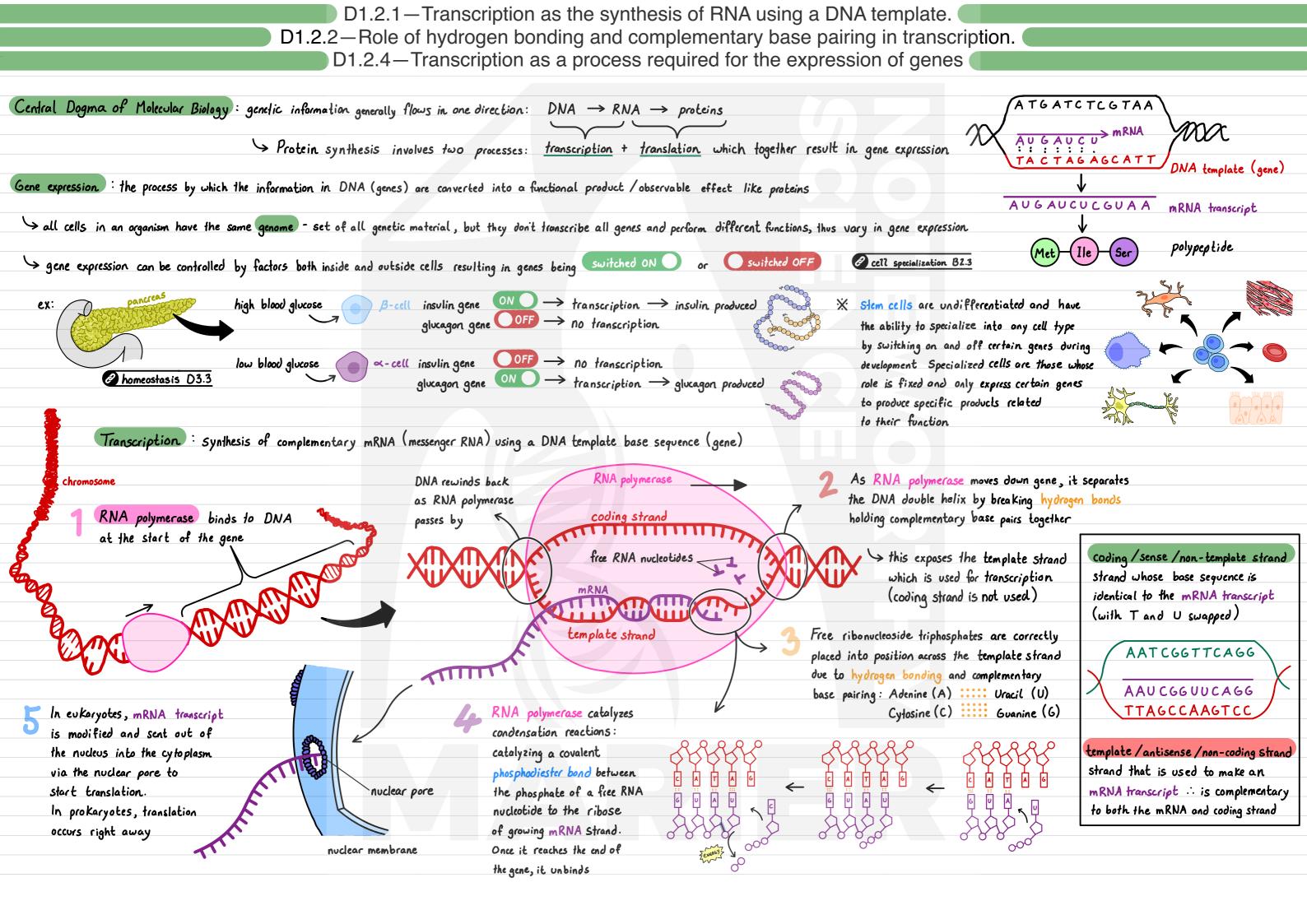

What biological processes depend on hydrogen bonding?

Theme: Continuity + Change

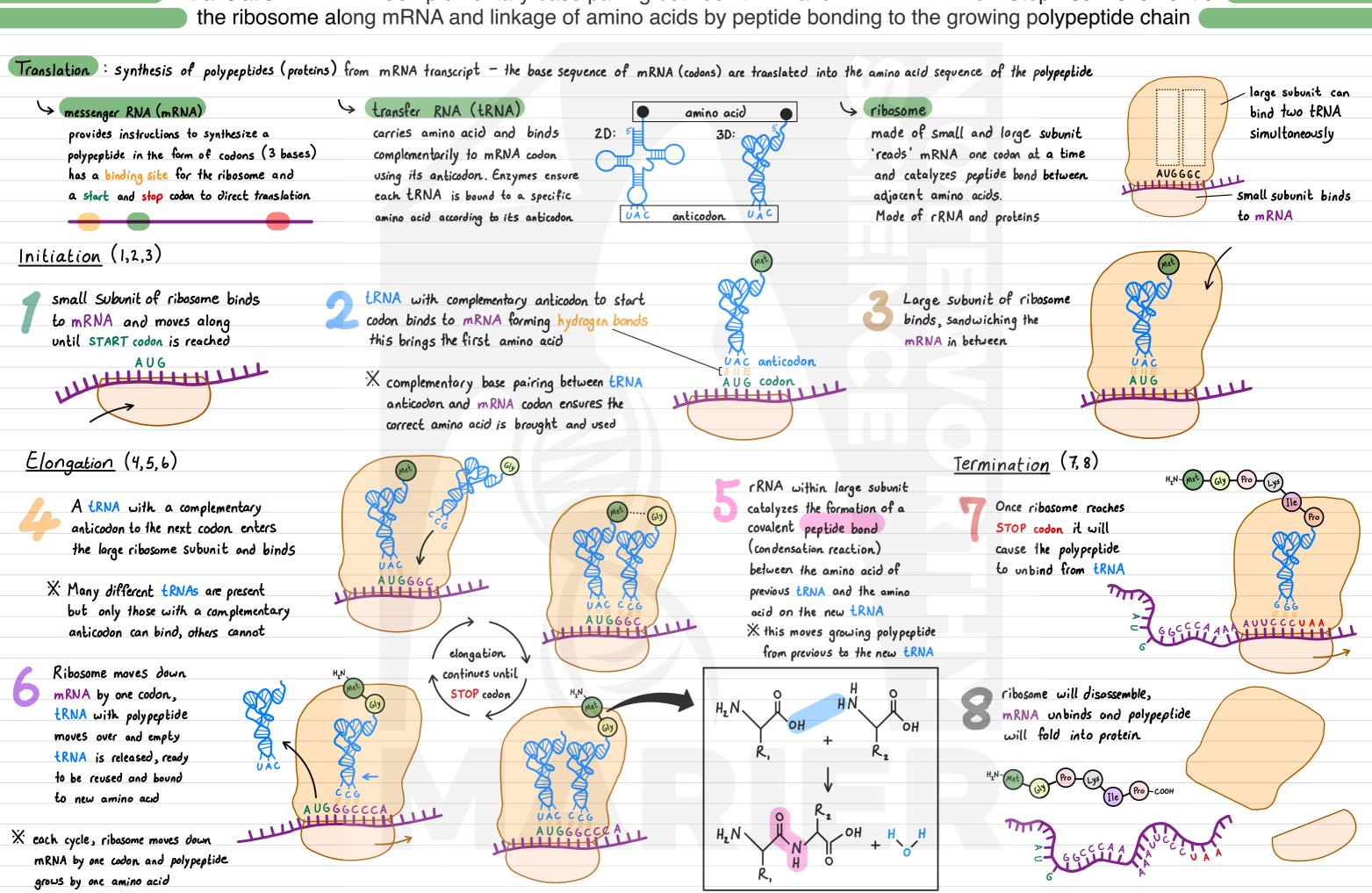
Level of Organization: Molecules

Written and drawn by:

PETER MARIER

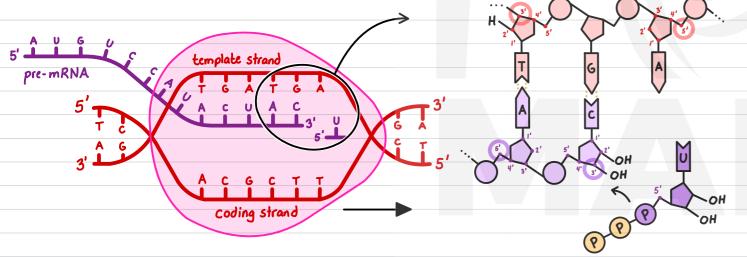


SL Learning Outcomes


D1.2.1	Transcription as the synthesis of RNA using a DNA template	Students should understand the roles of RNA polymerase in this process.
D1.2.2	Role of hydrogen bonding and complementary base pairing in transcription	Include the pairing of adenine (A) on the DNA template strand with uracil (U) on the RNA strand.
D1.2.3	Stability of DNA templates	Single DNA strands can be used as a template for transcribing a base sequence, without the DNA base sequence changing. In somatic cells that do not divide, such sequences must be conserved throughout the life of a cell.
D1.2.4	Transcription as a process required for the expression of genes	Limit to understanding that not all genes in a cell are expressed at any given time and that transcription, being the first stage of gene expression, is a key stage at which expression of a gene can be switched on and off.
D1.2.5	Translation as the synthesis of polypeptides from mRNA	The base sequence of mRNA is translated into the amino acid sequence of a polypeptide.
D1.2.6	Roles of mRNA, ribosomes and tRNA in translation	Students should know that mRNA binds to the small subunit of the ribosome and that two tRNAs can bind simultaneously to the large subunit.
D1.2.7	Complementary base pairing between tRNA and mRNA	Include the terms "codon" and "anticodon".
D1.2.8	Features of the genetic code	Students should understand the reasons for a triplet code. Students should use and understand the terms "degeneracy" and "universality".
D1.2.9	Using the genetic code expressed as a table of mRNA codons	Students should be able to deduce the sequence of amino acids coded by an mRNA strand.
D1.2.10	Stepwise movement of the ribosome along mRNA and linkage of amino acids by peptide bonding to the growing polypeptide chain	Focus on elongation of the polypeptide, rather than on initiation and termination.
D1.2.11	Mutations that change protein structure	Include an example of a point mutation affecting protein structure.

The Learning Outcomes

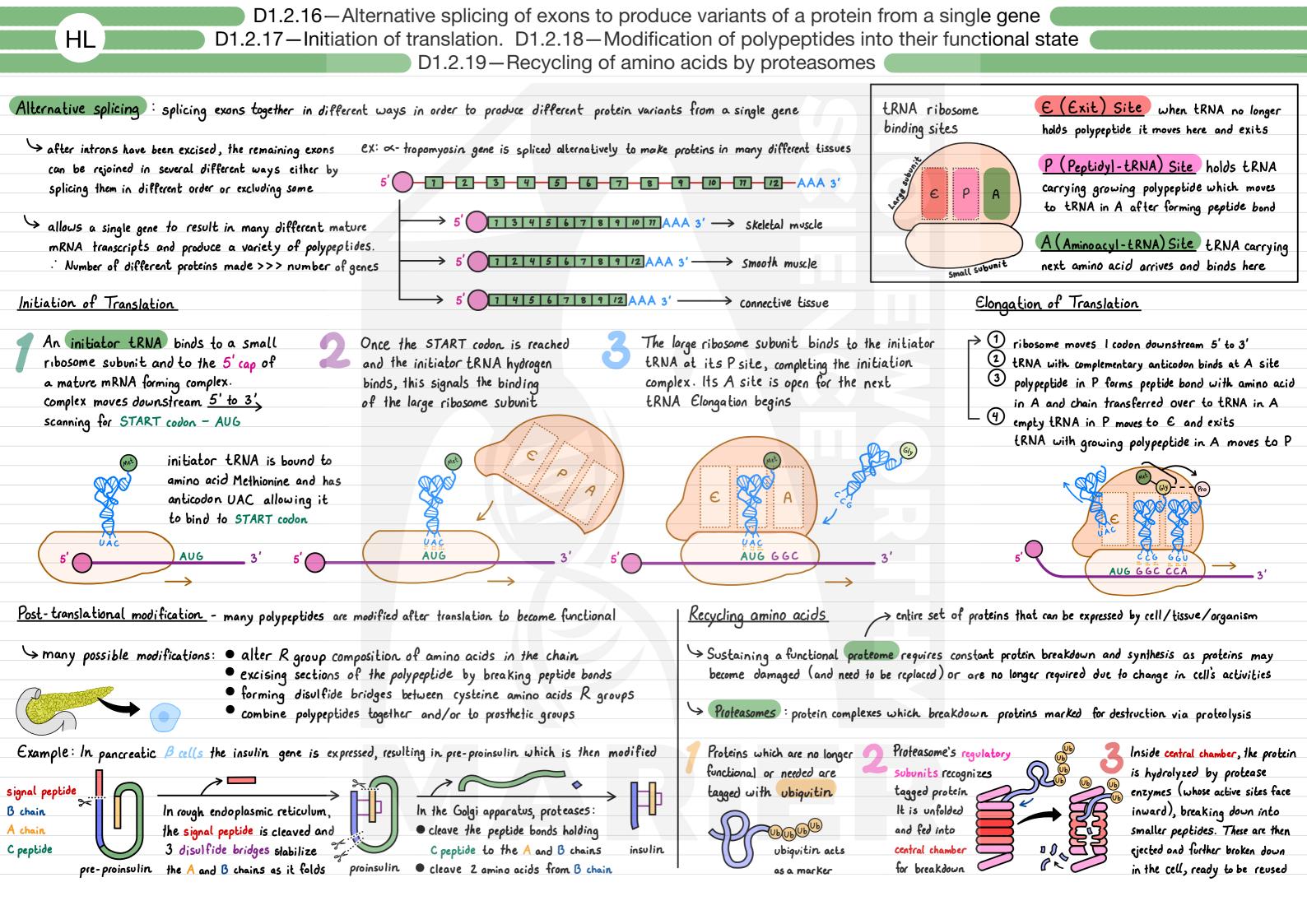
D1.2.12	Directionality of transcription and translation	Students should understand what is meant by 5' to 3' transcription and 5' to 3' translation.
D1.2.13	Initiation of transcription at the promoter	Consider transcription factors that bind to the promoter as an example. However, students are not required to name the transcription factors.
D1.2.14	Non-coding sequences in DNA do not code for polypeptides	Limit examples to regulators of gene expression, introns, telomeres and genes for rRNAs and tRNAs in eukaryotes.
D1.2.15	Post-transcriptional modification in eukaryotic cells	Include removal of introns and splicing together of exons to form mature mRNA and also the addition of 5' caps and 3' polyA tails to stabilize mRNA transcripts.
D1.2.16	Alternative splicing of exons to produce variants of a protein from a single gene	Students are only expected to understand that splicing together different combinations of exons allows one gene to code for different polypeptides. Specific examples are not required.
D1.2.17	Initiation of translation	Include attachment of the small ribosome subunit to the 5' terminal of mRNA, movement to the start codon, the initiator tRNA and another tRNA, and attachment of the large subunit. Students should understand the roles of the three binding sites for tRNA on the ribosome (A, P and E) during elongation.
D1.2.18	Modification of polypeptides into their functional state	Students should appreciate that many polypeptides must be modified before they can function. The examples chosen should include the two-stage modification of pre-proinsulin to insulin.
D1.2.19	Recycling of amino acids by proteasomes	Limit to the understanding that sustaining a functional proteome requires constant protein breakdown and synthesis.


D1.2.5—Translation as the synthesis of polypeptides from mRNA. D1.2.6—Roles of mRNA, ribosomes and tRNA in translation. D1.2.7—Complementary base pairing between tRNA and mRNA. D1.2.10—Stepwise movement of the ribosome along mRNA and linkage of amino acids by peptide bonding to the growing polypeptide chain

D1.2.3—Stability of DNA templates. D1.2.8—Features of the genetic code. D1.2.9—Using the genetic code expressed as a table of mRNA codons D1.2.11—Mutations that change protein structure genetic code: The base sequence of nucleotides which provide information to make a protein - the order determines amino acid sequence \rightarrow a 3-base code is necessary as a single and two base code could only provide enough combinations for 4(4') and $16(4^2)$ amino acids respectively a triplet code provides more than enough combinations (43 = 64 codon combinations) for all 20 amino acids and STOP signals as well nucleic acids Al.2 > the triplet code is universal: all organisms (and viruses) use the same code to synthesize proteins, with only very few exceptions codon: 3 nucleotide base sequence which codes for an amino acid · Evidenced by transgenics: When a gene from one species is introduced into another allowing the organism to transcribe and translate protein of interest JC AG AGCU • Shows connectivity between all organisms and that all life shares a last universal common ancestor (LUCA) origin of cells A2.1 G the triplet code is degenerate: most amino acids are coded for by more than one codon ex: glycine is coded by 4 codons: GGA, GGC, GGG, GGU · · · ATA · · · · · ATG · · • having multiple codons makes allowances for possibility of mutation ex: original mutated STOP O Trp template template as if a change to codon occurs, it may not alter which amino acid is AG Arg · · · UAC · · · ···UAU··· mRNA mRNA C coded for and : the gene's product will be unaltered - this is called a silent mutation as even though base sequence polypeptide \cdots — Tyr — \cdots · · · - Tyr - · · · polypeptide is altered, there is no change in phenotype (observable features) DNA is a very stable molecule due to the covalently-linked phosphate-sugar backbone and many hydrogen bonds holding strands together. When transcription occurs, DNA GACU AGCU AG strands are separated (making them briefly more vulnerable to mutation) but generally DNA template base sequences don't change, allowing the same mRNA to be transcribed ex: neurons (nerve) and cardiac (heart) muscle cells the stability of the DNA template is crucial to ensure the same correct protein is always translated. This is especially important for non-dividing somatic (body) cells as they will transcribe the first base same template throughout the lifetime of an individual and as more of these cells will not be how to read: do not divide and cannot replace themselves produced, any mutations would accumulate and the proteins may be altered or even non-functional inner to outer wheel Second base third base DI.3 Mutation point mutation a genetic mutation where a single nucleotide base is changed, inserted, or deleted amino acid base substitution mutations swap one base for another and this alteration to the gene can affect the translated protein structure and functionality ex: UCC -> Ser ex: Haemoglobin is a protein composed of 4 polypeptides (two B + two <) and is responsible for carrying Oz in red blood cells & B1.2 Proteins HL Example translations ··· CTC ··· ... CAC ... TTAGCCAAGTCC CGTGGCATTTGA In the normal gene, A point mutation in the B chain gene causes the mRNA codon transcribed to change, coding ... GTG 6 A G ... the B chains produced resulting in the hydrophobic amino acid Valine to be translated in the chain AAUCGGUUCAGG CGUGGCAUUUGA rather than hydrophilic Glutamic acid, altering the protein's shape join with the a chainsGUG.... ... 6 A G ... results in haemoglobin forming filaments and changing the overall to form a globular shape shape of the red blood cell into a sickle-shape. This condition polypeptide Asn-Arg-Phe-Arg polypeptide Arg — Gly — Ile .. - Val - - Glu - ... (sickle-cell anemia) can lead to blood clots and reduced Oz transport

D1.2.12—Directionality of transcription and translation. D1.2.13—Initiation of transcription at the promoter. HL D1.2.14—Non-coding sequences in DNA do not code for polypeptides. D1.2.15—Post-transcriptional modification in eukaryotic cells. D1.2.16—Alternative splicing of exons to produce variants of a protein from a single gene Not all DNA sequences are genes. In eukaryotes the majority of DNA is non-coding (does not code for polypeptides). At one point this was termed 'junk DNA' but in actuality they serve many functions: telomeres: region of repetitive nucleotide sequences at the ends of linear chromosomes > RNA-coding genes: Introns: non-coding sequences within genes. Introns are between exons (coding sequences of DNA are sections) and after transcription (before translation) introns are excised used to transcribe after each round of DNA replication DNA is shortened transfer RNA (ERNA) out via alternative splicing to make many different mRNA and proteins (due to lagging strand not being fully copied). Telomeres act and ribosomal as a cap and barrier to prevent genetic deterioration and once they RNA (rRNA) which are gone, the cell no longer divides and can undergo programmed are crucial for cell death. This is a deterrent to cancer and the reason for aging protein synthesis Regulators of gene expression: Specific non-coding DNA sequences which initiate, promote or suppress gene expression, controlling relative gene activity via the binding of transcription factors (regulatory proteins) • Promoter: non-coding DNA sequence which initiates gene transcription, located • Enhancer: non-coding DNA sequence which promotes gene transcription before (upstream) of gene. Transcription factors first bind which when bound by an activator protein (transcription factor) then allows RNA polymerase to bind and start transcription - act as a ON switch for genes, increasing expression 🚱 Gene expression D2 2 • Silencer: non-coding DNA sequence which block or reduce gene transcription when bound by a repressor protein (transcription factor) • Terminator: DNA sequence which marks the end of a gene and - act as an OFF switch for genes, decreasing expression signals RNA polymerase to stop transcribing and unbind Post-transcriptional modification - In eukaryotes the RNA synthesized (pre-mRNA) is modified before translation Transcription RNA polymerase catalyzes a condensation reaction between the phosphate of the 5' end of a free Addition of 5' cap · a methylated-guanosine 'cap' is added to the 5' end of the RNA • moves along template antisense DNA strand in a 3' to 5' direction until terminator is reached Polyadenation: a chain of hundreds of adenine nucleotides • synthesizes mRNA in a 5' to 3' direction (adding to 3' end of ribose only) 'poly A tail' is added to the 3' end of the RNA

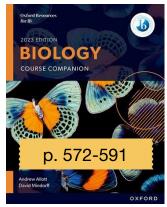
ribonucleotide triphosphate to the OH on the 3'end of a growing mRNA, forming a phosphodiester bond

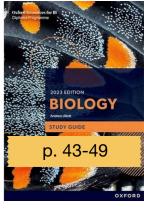


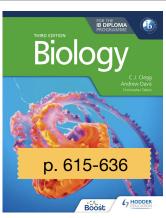
X 5' cap and 3' poly A tail: √aid in nuclear export √assist in translation ✓ improve stability and prevent degradation from nuclease enzymes

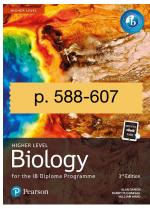
mature mRNA

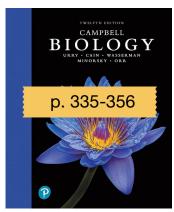
Splicing: Introns (non-coding sequences) within RNA 5 are removed using a complex of small nuclear ribonucleoproteins (snRNPs) called a spliceosome. As the intron loops, exons are brought closer together and are joined (the intron is excised and snRNPs detach)

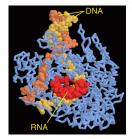

* mature mRNA consists of 5'cap, exons, and poly A tail

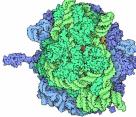




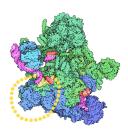

each resource is hyperlinked







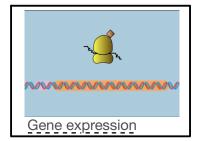
3D models


Ribosome

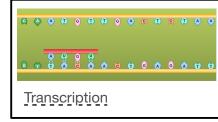
tRNA

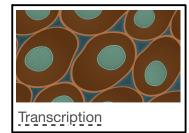
Proteasome

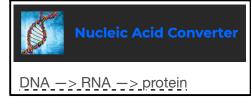
Spliceosome



Fagundes, N. J., Bisso-Machado, R., Figueiredo, P. I., Varal, M., & Zani, A. L. (2022). What we talk about when we talk about "Junk DNA." Genome Biology and Evolution, 14(5). https://doi.org/10.1093/gbe/evac055


Ramakrishnan V. (2002). Ribosome structure and the mechanism of translation. Cell, 108(4), 557–572. https://doi.org/10.1016/s0092-8674(02)00619-0


Srinivas, N., Rachakonda, S., & Kumar, R. (2020).
Telomeres and Telomere Length: A General
Overview. Cancers, 12(3), 558. https://doi.org/10.3390/cancers12030558


Simulators / Interactives

